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Abstract

The game played on the American TV show ‘Let’s Make a Deal’ gives rise to a
popular probiem in elementary probability which is equivalent to the three prisoners’
dilemma. This paper generalizes the problem into a sequential game with two con-
testants, and analyzes the decision-making process for the two players. Optimal stra-
tegies are derived for the two players, under various assumptions for the behavior of
the players and the structure of the game.
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1. Introduction

The game played on the TV show ‘Let’s Make a Deal’ (with Monty Hall)
gives rise to the following interesting variation. There are three curtains, a
(male) announcer and a (female) player. One of the curtains conceals a valu-
able prize and the other two are empty; only the announcer knows where the
prize is. The player wins the prize if she guesses correctly which curtain con-
ceals the prize. Initially the player selects a curtain. Then the announcer
opens an empty curtain that the player did not choose. Having eliminated that
curtain from contention, the announcer offers the player the option to select
the remaining third curtain as her final choice. At this point the player must
decide whether it is in her advantage to switch curtains or to insist on her
original guess [5]-[7].

The decision the player faces is a tricky problem in elementary probability
which has become a popular puzzle known as ‘the three curtains puzzle’. At
first it appears as if the player should be indifferent to which curtain she
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selects because both of the unopened curtains have the same probability of
concealing the prize. However, more careful examination of the conditional
probabilities reveals that this is not the case. The player’s first guess conceals
the prize with probability §, whereas the other curtain conceals the prize with
probability 2. Thus the player is not only better off if she switches to the third
curtain but, by doing so, she doubles her chances of winning the prize.

This surprising conclusion is what has made the problem a favorite
mathematical puzzle. The incorrect position of indifference appeals fo intui-
tion in an apparently compelling manner. As a result, most people are not
eager to accept that the player should actually switch curtains because they
find it counterintuitive. For this reason, some of the most prestigious business
schools in the United States use this problem to educate their MBA students in
decision-making: it is an example of how intuition can be misleading in mak-
ing decisions under uncertainty [4]. Recently, the puzzle has attracted public
attention because it appeared in nationally syndicated newspaper columns
across the United States and generated long arguments as to whether the
indifference position is optimal or not [1].

There are many arguments for verifying that switching curtains offers an
advantage. The shortest, though not the most intuitive, argument is the follow-
ing. Initially all three curtains are equally likely to conceal the prize and the
player has a § chance of winning the prize on her first guess. Suppose that the
player decides to stay with her first guess, after the announcer opens another
curtain. Clearly, nothing changes about the curtain the player has already
selected. In particular, the probability of getting the prize with that curtain is
the same as before, i.e. 5. But now there are only two candidate curtains and
one of them conceals the prize with probability 3. Therefore, the other curtain
conceals the prize with probability 1—% = %. Deciding never to switch cur-
tains is equivalent to not having the option to switch; hence the odds of win-
ning by not switching are one in three.

The critical element behind the solution of the puzzle is that the announcer
knows both which curtain conceals the prize and which curtain the player has
chosen before he opens a curtain, He is deprived of the opportunity to elim-
inate the player’s guess even if that curtain is empty. Therefore, the
announcer’s choice does not contribute anything to the likelihood that the
player’s curtain conceals the prize. On the contrary, the fact that, having had
the opportunity to do so, the announcer did not open the curtain which the
player did not choose,.does increase the probability of finding the prize behind
that curtain. This observation provides a heuristic explanation for why the
curtaid which the player did not choose is more likely to conceal the prize.

The object of this paper is to analyze the decision-making process for the
player in a more general version of the game, in which there are n available
curtains and the announcer successively eliminates & curtains. Each time the
announcer eliminates a curtain he offers the player an additional guess. The
player wins if she guesses correctly which curtain conceals the prize on her
last guess. In this case the player faces a series of k decisions and can choose
from an overwhelming number of possible strategies. This paper determines
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whether, and under what conditions, there exists an optimal strategy for the
player. Various assumptions for the behavior of the announcer and the struc-
ture of the game are studied. The main results of the paper are presented in an
informal manner in the remainder of this section. Section 2 gives a precise
definition of the game, and Sections 3 and 4 contain the mathematical results.

In the special case of a memoryless player (i.e. a player who does not
remember the course of the game) not only does there exist an optimal strategy
but a complete ordering of all possible strategies can be obtained. This topic
1s beyond the scope of the present paper and is presented elsewhere [2].

The intuition for many of the results in this paper is evident in the second
explanation given above for the original puzzle. When the announcer opens a
curtain, he is prevented from discarding the player’s current curtain and is,
therefore, not giving out any information on the likelihood of finding the prize
behind that curtain. At the same time, the announcer’s choice increases the
likelihood of finding the prize behind one of the curtains he could, but did not,
choose. Thus it seems plausible, and turns out to be the case, that the last time
the player has the option to switch curtains, the curtains that are more likely to
conceal the prize are those that she has never visited before. In other words,
any strategy that switches to an unvisited curtain on the last round of the game
is optimal. Furthermore, the probability of finding the prize behind one of the
unvisited curtains does not depend on the strategy that the player followed dur-
ing the earlier part of the game. The previous rounds only prevent the
announcer from discarding certain curtains, and this is taken into account by
all the move-to-a-new-curtain-on-the-last-round strategies. Choosing an
unvisited curtain on the last round gives the contestant the largest probability
of winning the prize regardless of what she did on all the previous rounds
(Theorem 3.1).

Section 4 extends the original game in two directions. First, the number of
rounds becomes random and unknown but independent from the actions of the
player and the announcer. Among all the optimal strategies for the game with
a known number of rounds, only one remains optimal. This is the strategy
where the player moves to an unvisited curtain on every move (Theorem 4.1).
Second, the number of rounds remains known but the game becomes a zero-
sum game where the announcer attempts to minimize the player’s probability
of winning. Again, among all the move-to-a-new-curtain-on-the-last-round
strategies only one remains optimal. This is the strategy where the player
stays with her initial guess until the last move and then chooses a new curtain
(Theorem 4.2); obviously this is the only strategy which is not affected by the
announcer’s behavior. Thus either a random number of rounds or a malevolent
announcer reduce the optimal strategies from the infinitely many move-to-a-
new-curtain-on-the-last-round to a single strategy, one for each case. Unfor-
tunately, these two strategies do not coincide, and this approach does not yield
a unique optimal strategy for the zero-sum game with a random, unknown
number of rounds. For this most general game, finding the optimal strategies
for both the player and the announcer remains an open problem. A conjecture
for the form of these strategies is presented in Section 4.3.
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2. Definition of the game

The definition of the general version of the game is as follows. There is
one announcer, one player and n nodes (curtains). The nodes are labeled
1,2,...,n. One of these nodes, the winning node, contains a prize; only the
announcer knows where the prize is. There is no loss of generality in assum-
ing that all nodes are equally likely to contain the prize. The player wins the
prize by guessing correctly, at the end of the game, which the winning node is.

The game begins with the player making an initial guess (i.e. selecting a
node). Afterwards, the announcer and the player take turns in making a move,
with the announcer moving first. A move is the selection of, or the visif to, a
node. The announcer makes a move by choosing a node which does not con-
tain the prize and eliminating it from further consideration, by revealing its
contents; however, the announcer cannot choose the player’s most recent
guess, The player makes a move by choosing a node—not already eliminated
by the announcer—which represents her current guess for the winning node.
One move by the announcer and one move by the player comprise one round
(stage, complete move).

The game begins and ends with the player making a move. Therefore, the
above definition entails the convention that the player’s initial move provides a
starting point and does not constitute part of any of the rounds of the game.
The number of nodes, n, is fixed. The number of rounds of the game is deter-
mined by a random variable K, whose distribution is known to both the player
and the announcer but whose actual value is unknown to them. The game
where K is constant and equal to k is denoted by G(k), with the understanding
that k = 0 corresponds to the game where the player simply chooses a node
and the game ends. This emphasizes the fact that in G(k) the player actually
makes k+1 moves. It should also be noted that the game G(k) does not make
sense unless there are at least two nodes left (not eliminated) after the
announcer has discarded £ nodes. Therefore, the integers n and k are subject
to the constraint n = k+2 or, more generally, the support of K is contained in
{1,2,...,n=2}.

At any round of the game, the nodes available to the player are all the
nodes except for the ones which have been eliminated by the announcer in the
previous rounds. The nodes available to the announcer are all the nodes
except for the ones already eliminated, the one containing the prize and the
one which represents the player’s most recent move.

The probability of winning is a function of the strategies used by the player
and the announcer. The player’s strategy is defined as the collection of condi-
tional distributions of her kth move (k = 1,2,...), given all feasible histories of
the game at that point. The announcer’s strategy is defined analogously. The
history, hy, for any round k captures the information contained in the course of
the previous k—1 rounds. Let v, and d; denote the nodes which are respec-
tively visited and discarded on the kth round (v, denoting the player’s initial
selection). The history for the kth round is

hk=(vo,dl,vl,d2,U2,...,dk_l,Uk_1,dk) (k? 1).
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The d’s are all distinct and ve € {dy,d,,...,d}, for all k. The 2k-tuplet hy
represents the knowledge on which the player bases her action in the kth
round. The (2k+1)-tuplet (h;_,,v,_,) represents the knowledge on which the
announcer bases his selection for the kth discard. For notational purposes it
is convenient to extend the definition of h, to the case k = 0 by defining
hy = (vg). The tuplets h, (k= 0,1,...) form the space ¥ of all possible his-
tories for the game.

The announcer is either fair or malevolent (the announcer can also be help-
ful [2], but that case is not discussed here). When the announcer is fair, his
conditional distribution on any round is uniform over all the nodes he is
allowed to discard at that point. In this case, the problem is to determine the
strategy that maximizes the player’s probability of winning for a given distri-
bution of K. When the announcer is malevolent, his conditional distribution on
any round is the one that minimizes the player’s overall probability of winning
the game. In this case the game is a zero-sum game, and the problem is to
determine the value of the game as well as the strategies (for the announcer
and the player) which attain that value.

For the remainder of this paper, let R denote the random variable that deter-
mines the winning node, and assume (without loss of generality) that R has a
uniform distribution on {1,2,...,n); let V, denote the random variable that
determines the node which the player visits on the kth round; let D, denote the
random variable that determines which node the announcer discards on the kth
round and let D, = (d,...,d;} denote the set of discarded nodes on the first &
rounds. Let also

Hk = (VO’DI’VI’DZ’ VZ""’Dk—]’V/\'—]’Dk)

denote the random variable which describes the history of a game up to the kth
round, A, denote a history that has positive probability of occurrence under the
strategies being considered and the distribution for the number of rounds, hj
(for 0 < j < k—1) denote the sub-history of the first J rounds that is deter-
mined by 4, and Hj denote the random variable that describes hj.

If @ denotes a strategy for the player and ¥ denotes a strategy for the
announcer (given a certain distribution for the number of rounds, K), the pro-
bability of winning is denoted by Py w(win). When the announcer is fair and
the number of rounds is fixed in advance, the probability of winning is simply
denoted by Pg{win}. For the remainder of the article, it is understood that
probabilities conditional on events of zero probability are equal to 0.

3. The main optimality resulf

This section considers the case where the number of rounds is fixed in
advance (and equal to k) and the announcer is fair. In this game the player’s
problem is to choose the k-strategy @ which maximizes Py{V. = R} over all
possible strategies of length «.

Let Cyy abbreviate a change-to-a-new-node move where the player chooses
one of the previously unvisited nodes at random. Theorem 3.1 shows that the
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class of optimal strategies is equal to the class of strategies where the player
moves to an unvisited node on the last round, that is, the class of strategies where
the kth move is a Cy. The next two lemmas are needed to prove Theorem 3.1.

Lemma 3.1. For any node r ¢ D;:

Po(Vy = vg) 4
PolHy = hy |R = r) = 200 T Po(V; = v; | H; = 1),
IT (n—j-2+y; i=t
j=0
where
1, ifr= Uj,
Yi = .
0, ifr= v;.

Proof. Since
Py(H, = hy |R =1} = Po(Hy_y = hy_y, Vioy = Vg1, Dy = di | R
| =PDy=dy |Hy =Mty Vioy = vy, R=7r})
XPp{Vi_y = Vg_y | Hy_y = hy_y, R =1}
XPg{Hy_y = hy_y |R =1},

I
~
-

and on the kth round the announcer has either n—k or n—k—1 available nodes
(depending on whether v,_| = r or not) it follows that

Po(Hy = hy | R =r)
_ PolVio1 = v |H_y=hp_1, R=r}Pp(Hy_{ = hy_ |R =)
n—k—1+yk_1 ’

Successive applications of this formula and the observation that
Ppl{Vi_y |H;_y, R} = Pg(V_y | H;_ )
yield the result.
Lemma 3.2. Fork = 2,
k=1
Y, PeVo =vo) I] PolV; =v; | H; = b} = (n—1)(n—2)--(n—k),
alt b, j=1

where the sum is over all possible histories hy = (vg,d|,V{,..., Vg1, dy),
i.e. over all v;’s and d;’s in {1,2,...,n} such that v;¢{dy,...,d;_|} and
di¢ {dy,dy,...dj_y, v 1

Proof. The proof is by induction on the number of rounds k. For k = 2,
Y PolVo =00} Pp(V) = vy |H = hy}
all h,

Vg, d, #Ug,0,#d,,d, ¢ {dy,v,}

= L Py(Vo = v} Pp(Vy = vy | Hy = hy}
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Y PolVo=vol Y PolVi=v,|H,=h) > 1
all A, viv, 2d, dyd,d {v,,d,)

(n=2) Y, Pyp{Vy = vy}
all f,

=(n-2)) Y PslVy =)

vy dyid,#uy

= (n-2)(n-1).

For k = p+1, the quantity of interest is

p
Y, PolVo=vo) [] PolV; = v; | H; = )

all h,,, i=1
p—1
= )Y Po(Vp= vo} I PolV; = vi | H; = by}
all i, i=1

X Z Z Pd"{Vp:Ulep:hp}’

Upi0,¢D, d,, id,, é(v,)] LD,
and a calculation similar to the case k = 2 shows that

Y Y PplV, =v, |H, = h,} =n-p-1.

v,iv,¢32, dp,,,:dpﬂé [up}u.‘Dp

Thus,
p
Y PolVo=vo} I] PslV; = v; | H; = h;)
all h,., i=1
p-1
= (n—-p-1) 1):‘; Pp{Vo = vo} I PolV; =v; | H; = h;}
all i=1

and, assuming the assertion holds for all strategies of length p, the result fol-
lows from the induction hypothesis.

Theorem 3.1. The collection of optimal strategies is the (non-empty) set of
strategies for which the final move is a Cy. That is, a strategy is optimal if
and only if (with it) the player always can, and does, move to an unvisited
node on the last round. In the game with n nodes and k rounds, the winning
probability of any such strategy is

n—1
n(n-k-1)"

Proof. Successive conditioning and Lemma 3.1, together with the uniform
distribution of R and the fact that P4{V} | H,,R) = Py(V, | H,}, give

S | e

Py{win) = ~ Y Pg{Vy =r|R = 1)
r=1
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n
==Y Y PolHi=h,Ve=r|R=r1]
r=1 all i,

n

= Z ): PolVi = r | Hy = h)PolHy = hy | R = 1)

r=1 all i,

n

) (P¢{Vk = r | Hy = ) PolYo = vo)

r=1 all h,

S |-

k-1 k-1
j=1 j=0
with the y;’s as in Lemma 3.1 (y; = 1, ifv; = r; y; = 0, otherwise). An upper
bound for Pg{win} can be obtained from the last expression by taking all the
¥;’s equal to zero. This substitution and Lemma 3.2 lead to:

n

Potwin) € ———— ¥ ¥ (PalVi = r1He = b1 PalVo = vo)
n H (Il—j—2) r=1 all Iy
j=0 k-t
x I1 PeplV; = j|Hj=hj})
j=1
1 k-1
= =7 ZP<1>{V0=UO}HP<I>{Vj="j|Hj:hf}
nH (n_j_.z) all i, j=1
j=0
_ n—1
T on(n—k-1)"

This inequality becomes an equality if and only if, for every r and every his-
tory h, with positive probability under @ (i.e. Pg{H, = h,} > 0), either
Yo=Y1 =" =Y1 =0 or Pp{Vy =r|H, = h} =0 (or both). In the first
case (yo =¥y = '+ = Yx—1 = 0), equality holds because the corresponding
term in the sum is equal to the same term in the upper bound. In the second
case (Pp{V, =r|Hy = h} =0), equality holds because the corresponding
term in the sum (and in the upper bound) is equal to zero. Thus, whenever
Ry(Ve=r | Hy = hy) > 0, equality holds if and only if all the y;’s are equal to
0 or r ¢ {vg,Vy,...,Ux_ }- Therefore, a necessary and sufficient condition for
equality is that all the values that V. can take with (strictly) positive probabil-
ity correspond to nodes which were not visited in the first k—1 rounds. It fol-
lows that a strategy is optimal if and only if its final move is a Cy.

The last theorem completely characterizes the class of optimal strategies for
the general game with k rounds and a fair announcer. A Cy is at any point at
least as good as any other move (this can be seen by applying the theorem fo
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the games with 1,2,...,k~1 rounds) and a final Cn guarantees the maximum
probability of winning. Thus the strategy Cy-+-Cy is both greedy and
optimal, and all the strategies that end in a Cy are equivalent,

It should be emphasized that Theorem 3.1 is a general result which encom-
passes all the possible strategies for the player, non-randomized and random-
ized alike. Also, the theorem assumes that in the player’s strategy the final Cy
move is always feasible. This assumption may require a constraint between
the number of nodes and the number of rounds which is more restrictive than
n = k+2 (see Section 2). For example, if the player chooses the greedy stra-
tegy Cy---Cy, then necessarily n = 2k+1; otherwise, on the last round the
player will not be able to visit a new node, if all the nodes discarded by the
announcer have never been visited by the player.

4. Extensions

4.1. The announcer’s behavior. This section concerns the case of a zero-
sum game, where the announcer wishes to minimize the player’s probability of
winning. The game has a value because of the well-known minimax theorem
[3]. Theorem 4.1 gives the value of the game and shows that the player attains
this value if and only if she adapts the strategy of staying with her original
choice until the last round, and then moves to another curtain. This strategy is
denoted by S---SC, with S denoting a stay-on-the-same-node move where the
player’s conditional distribution has all its mass on the current node. The
optimal strategy for the announcer (denoted by 4) is to randomize among all
nodes available to him on every round.

The proof of Theorem 4.1 requires Lemma 4.1, which is of interest in its
own right. Let @ denote the follow-the-player (or, eliminate-old-nodes) stra-
tegy for the announcer. Lemma 4.1 shows that whenever the player chooses a
strategy that ends in a Cy move (and is different from S- - -SCy), a malevolent
announcer is better off by following @ than by being fair.

Lemma 4.1. For any strategy of the form DCy,
P(pCng{Wiﬂ) < PCDCN,A[Win}’
with a strict inequality unless @ = §---S.

Proof. Let |A| denote the cardinality of the set A and suppose that the
game has & rounds. Let U; denote the set {VO,VI,...,VJ-} of the random vari-
ables which specify the nodes that the player visits in the first j rounds
(0 < j < k). Using this notation,: :

Pypc,.olWin} = Pgc oV = R}

It
~
-

n
= L Poc,olVi =r|R = r}P(R
=1

r

n
=Y PocoolVi=r,ré ¥, |R = r}P(R = r)
r=1
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Poc,olVi=rreV_|[R=r)
(

|

n

r=1
n
Y PocyolVi=rlréVe . R=r)
r=1

XPgc,,olr ¢ Vgt | R = r}).
The probability Poc, w(Vi =1 |r¢V_, R =r}is

1

P Vy = W R=r}= ———7—,
wc, v Ve =1 |ré Ve } PR RO

for any strategy ¥ of the announcer. In particular, when ¥ = @ this probabil-
ity is just

1
n-k—1"
Thus,
1 - '
P win} = ———— P ré¢_IR=r
@, ol Win} n—k=1) r; oc,, ol & Vi | }
1 n
= — P Vozr,Vi#gr,.., Vi #r|R=r
wn—k=1) rzl oc,,0{Vo t k1 # 7 }
1 n
g — P Vo#r|R=r
n—k—1) r;l ocy.0lVo # 7 | }
~ 1 i n-1
n(n—k-1) =oon
_ n—1
nin—k-1)

= Pyc,,.alwin} (by Theorem 3.1),

and it is easy to see that an equality obtains only if & = §---§.

Theorem 4.1. In the G(k) zero-sum game, S---SC is the maxmin strategy
for the player, A is the minimax strategy for the announcer and
(n—1)/n(n—k—1) is the value of the game.

Proof. From Theorem 3.1 and the fact that Ps...gc w{win} does not depend
on ¥,

min max P win} € max P win
1n ma o, wl } 1a @, l )

_ n—1
T n(n-k—1)
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= mlfilﬂ PS' -.8C, g/{Wiﬂ}
< maxmin Py o(win}.
b v e

Since maxg ming Py w{win} < miny maxg Py w(win} is always true, the value
of the game is (n—1)/n(n—k—1) and §---SC is a maxmin strategy. Lemma
4.1 shows that any other strategy ending in Cy is not maxmin and Theorem
3.1 shows that any strategy not ending in Cy cannot be maxmin,

In the light of this result, the player does not have to worry much about
encountering an adverse announcer. The player can ensure herself, regardless
of the announcer’s behavior, of a probability of winning which is equal to the
largest probability of winning with a fair announcer. The catch, of course, is
that Theorem 4.1 requires that the number of rounds & be known; otherwise,
S+ -SCy cannot be realized.

4.2. Unknown number of rounds. This section considers the case where the
number of rounds & is unknown but determined by a random variable K with a
known distribution. In this game, the player has a strategy which is optimal
for any value of K and, therefore, optimal regardless of k. This strategy is the
greedy strategy C---Cy (always move to a new node) which is obviously not
affected by the value of K. The next theorem shows that Cn''Cy is the
unique optimal strategy when k is not known but determined by a probabilistic
mechanism.

Theorem 4.2. Consider a game with a fair announcer in which the number
of rounds is determined by some probabilistic mechanism. Let K denote the
random variable that describes the length of the game and assume that the sup-
port of K is equal to {1,2,...,1}, with / < in. Then, the strategy C-+-Cy (/
Cn’s) is the unique strategy which maximizes the player’s probability of win-
ning.

Proof. From
!
Pp{win) = ) Py(win | K = k)P{K = k)
k=1

and the assumption that all the P4i{K = k} terms in the sum are positive, it
follows that if there exists a strategy & which maximizes Pgy{win | K = k} for
all £ between 1 and / it must be optimal. The strategy Cy-+-Cy is well-
defined (since I < }n), and Theorem 3.1 implies that it is the only strategy
which satisfies this property.

4.3. The zero-sum game with an unknown number of rounds. The minimax
theorem shows that the game has a value even when the announcer is
malevolent and the number of rounds is random. At this point, however, no
general result is available for the optimal strategies of the two contestants.

On the basis of Lemma 4.1, it is tempting to conjecture that the follow-the-
player strategy (8) is minimax for the announcer. Yet this strategy suffers
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from the drawback that it may force the announcer to effectively reveal the
identity of the winning node (if the player accidentally stumbles upon that
node during the course of the game). Based on this observation, we conjecture
that the announcer’s optimal strategy consists of randomizing on every round
between the follow-the-player and the fair strategy., We also conjecture that
the player’s optimal strategy randomizes between the following moves: (a)
move to an unvisited node, (b) stay on her current node and (c) return (with
some positive probability) to the last node she visited, when the announcer did
not follow her. The probabilities with which the announcer and player ran-
domize on every round depend on the history of the game and the distribution
of K.
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