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When firms face menu costs, the relation between their output and maney is highly non-linear.
At the aggregate level, however, this needs nat be sa. In this paper we study the dynamic behaviour
of a menu-cost economy where firms are heterageneous in the shocks they perceive, and the
demands and adjustment costs they face. In this context we (i) generalize the Caplin and Spulber
(1987} steady-state monetary-neutrality result; {ii) shaw that uniqueness of equilibria depends
not only on the degree of strategic complementarities but also on the degree of dispersion of
firms® positions in their price-cyele; (iii) characterize the path of output outside the steady state
and show that as strategic complementarities become more impaortant, expansions become Longer
and smoother than contractions; and (iv} show that the potential impact of monetary shocks is
an increasing function of the distance of the economy from its ateady state, but that an uninformed
policy maker will have no effect on output an average.

1. INTRODUCTION

An important part of the debate on the respanse of prices to monetary shocks has centred
on the dynamic discrepancy between economies with and without price rigidities, on the
magnitude and persistence of these discrepancies, and on whether the monetary authority
should attempt to exploit rigidities or not.

These issues have been typically addressed in a framework in which individual prices
(or wages) adjust according to some fixed time-schedule, resulting in a sluggish aggregate
price level. Caplin and Spulber (1987) {henceforth CS) show that such an assumption
is not as innocuous as may seem-—when the fixed time-schedule approach is abandoned
in favour of having individual prices adjust according to a rule limiting the size of the
departure from a target real price (a state-dependent rule), results on monetary policy
effectiveness may change dramatically. They provide an example where individual prices
are controlled infrequently according to simple state-dependent rules, but where the
aggregate price level is fully flexible with respect to certain types of monetary shocks
(both anticipated and unanticipated).

CS’s ecanomy, while dynamic, starts and remains at its steady state; the assumptions
they make ensure that—except for a location parameter determined by the current level
of the money stock—the distribution of prices is self-replicating. Many new issues arise
when the shape of this distribution changes endogenously over time. For example, does
the economy have any natural force pushing its output dynamics towards those of the
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CS economy? What is the dynamic relation between money and output outside the steady
state? Is there a unique equilibrium path? Which is the role played by strategic interactions
in shaping the dynamic path of output? What is the average relation between maney
and output?

This paper provides a framework within which some of these questions can be
answered. We consider the simple microeconomic state-dependent rule used by CS; the
fixed (S, s) rule, which can be justified by the presence of fixed costs of adjusting prices
(*menu costs™). Under the maintained assumption of fixed (8, s) pricing rules, we describe
the endogenous evolution of the distribution of prices, and the way it influences both
output fluctuations and the response of output to monetary shocks.

Section 2 presents the basic macroeconomic framework, which corresponds to an
extension of Blanchard and Kiyotaki (1987) to a dynamic setting; Section 3 extends the
CS neutrality result to the case where firms differ in the shacks they are subject to, the
adjustment costs they perceive, and the demand elasticities they face.

In Section 4 we show that whether uniqueness can be guaranteed or not depends
not only on the degree of strategic complementarity, as happens when only symmetric
equilibria are considered (e.g. Cooper and John (1988)}), but also on the degree of
dispersion of firms' price deviations; the more dispersed these are, the stronger the degree
of strategic complementarities necessary to yield multiplicity.

Section 5 characterizes the path of output when the economy is outside its steady
state. We show that, in the presence of positive core inflation, strategic complementarities
introduce realistic asymmetries into the business cycle generated by the model; the stronger
these complementarities, the longer and smoother are expansions relative to contractions.

Section 6 shows that monetary shocks that are correlated with the level of output
and firms’ prices have effects on output outside the steady state. Yet monetary shocks
remain neutral on average, as long as they are independent of the location of the
distribution of firms’ price deviations. Section 7 presents concluding remarks and several
appendices follow.

2. MACROECONOMIC FRAMEWORK

Mankiw (1985) shows the potential first-order effects of monetary policy when small
(second-order) non-convex costs of adjusting prices are present and competition is
imperfect.! Recent static general equilibrium models further our understanding of the
macroeconomic role of such costs (e.g. Blanchard and Kiyotaki (1987), Rotemberg (1987)).
These models have several elements in common: (a} an aggregate output equation relating
output to real balances (aggregate demand) at a given instant in time, Y(¢)=
G{M(1)/Q(t)), with Y, M and Q denoting aggregate output, money stock and agaregate
price level, respectively, and G'>0; (b) a frictionless pricing equation for each firm
ai(t) = H{(Q(1), M(t}/ Q(r)), with ¢ denoting the i-th firm’s optimal (private) frictionless
price, and H, > 0, H,>> 0 (substitution and real balances or income effects, respectively);
(c} a menu cost of changing prices so that the actual price charged by firm i, g;, may
differ from its optimal frictionless price within some range; (d) a symmetric aggregate
price index; (e) the assumption that prices are at their frictionless optimal level before
the monetary shack; (f) the assumption that equilibria are symmetric and {g) the assump-
tion that cost and demand structures are the same across firms.

If prices can be changed costlessly, then q,(t) = g¥(t) = Q(t), and money is neutral.
An increase in the money stock is offset one-far-one by an equivalent increase in the

1. Akerlof and Yellen (1985} give a similar insight in tarms of near rationality.
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price level. However, in the presence of menu costs actual prices may remain constant
for some time while the money stock and frictionless prices are increasing. As a result,
the aggregate price level does not match the increase in the money stack. This raises real
balances and, through aggregate demand, output.

Caplin and Spulber {1987) extend the previous model to a dynamic setting. They
use results on optimal dynamic pricing rules in the presence of fixed costs of price
adjustments (Barro (1972), Sheshinski and Weiss (1977) and (1983}) to give more structure
to assumption (¢}. Under certain conditions on the process describing the path of money,
including monotonicity of sample paths, the presence of menu costs leads firms to follow
one-sided, fixed, {5, s) pricing rules. The price charged by a firm remains fixed until
increases in the money stock force its frictionless optimal price a given fraction s below
its frictionless optimal value. Once this trigger level is reached, firms reset their price to
a fraction S abave their frictionless optimal price. Formally, denoting log g; and log g7
by p; and p¥, respectively, the above pricing rule implies that p,(¢) — p¥(¢) belongs to
(s, S]forall i and ¢. We consider a continuum of firms: i € [0, 1], and denate the difference
between the logarithms of the ith firm's actual and frictionless optimal price by z{t),
which therefore belongs to (s, §1. To remove constants that are irrelevant in our analysis,
we assume that s =—5.

C8 also dispose of assumption (e). The reason for doing this is that in a menu cost
economy where monetary shocks occur more than once, firms are not at the point where
z;(£) =0 before every shock. Violation of condition (e} is important since the effects of
monetary shocks become ambiguous. For example, if all firms are bunched close to their
trigger point s, a {positive) monetary shock is likely to lower real balances and output
instead of raising them.

If the money stock increases continuously, the logarithm of a firm's nominal price
increases by a quantity equal to the width of the corresponding (S, 5} band every time a
firm adjusts its price; we denote this amount by A. Substituting the expression for g7
shown in (b} in the definition of z,(t), vields z,(¢) as a function T(-, -, +) of: (i) the initial
conditions faced by the i-th firm, p,(0), (ii) the logarithm of the aggregate price level,
P(t), and (iii) the logarithm of the real balances, m{¢)— P(1):

zi{(t} = 8~ T(z(0), P(1), m(1) — P(t}) (mod A), (1)

where x (mod A) denotes the remainder of dividing x by A.

Suppose initially T(z0), P(t), m(t) — P(¢)) (mod A)=0. That is, the i-th firm just
changed its price and therefore is at the target level S. If now m(t) rises, ceteris paribus,
real balances rise. This puts upward pressure on the firm’s frictionless optimal price and
lowers z;(t). This continues happening as the money stock rises bringing T(-, +, - ) closer
to A, thus z,(t) closer to the trigger level s. Once z;{t) reaches s, the price is immediately
reset to S, starting a new cycle.

The effects of changes in P(t}, also ceteris paribus, are less clear since substitution
and real balances effects play opposing roles on the determination of the frictionless
optimal price. An increase in P{t) raises p¥(t) through the substitution effect but lawers
it through the real balance effect. This tradeoff is a well-known source of multiple
equilibria {e.g. Ball and Romer (1987}) and affects the dynamic response of output to
monetary shocks in important ways; we discuss these issues in Sections 4 and 5.

CS show that money is neutral when the above assumptions are combined with an
initial distribution of {the logarithm of) prices that is uniform on (s, §]. Here we drop
the symmetry assumptions made in CS and the models mentioned above. This allows us
to address interesting non-steady-state issues and study the generality of CS’s steady-state
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neutrality result. We extend previous models in four ways: (a) there can be an arbitary
distribution of firms’ initial positions within their pricing cycle; (b) there are firm-specific
cost and demand shocks (idiosyncratic shocks}, (c) the cost of changing prices may differ
across firms, and (d) there may be differences in demand elasticities across firms. Extension
(b} corresponds to modifying the optimal pricing equation so that gf(1)=
H{Q(t), M(1}/ Q(¢r), Wi(t}), where W.(f) represents shocks affecting only firm i (and
w;(£) its logarithm), with H,> (. Combining this with (a), (¢} and (d) madifies equation
(1}

z(t) = §;— Tz (0}, P(¢}, m(1}— P(¢), wi(£)) (mod A;}, 2)

with 5; and §; denoting firm-specific trigger and target points and A; their difference (i.e.
A; =8;—s5;). Thus positive idiosyncratic shocks lower z,{t) (whenever the trigger level s,
is not reached) by raising the i-th firm’s optimal frictionless price.

To obtain explicit functional forms for H{-) and T(-, -, -), we extend Blanchard
and Kiyotaki's (1987} (henceforth BK) monopolistic competition model to a dynamic
setting where firms are subject to idiosyncratic demand and cost shocks (see Appendix
A). The frictionless pricing equation we obtain is of the form:

pi(t)=o(m(t) = P(1)}+ P(1) + wilt) (3)
with the parameter ¢ measuring the relative strengths of real balances (or income) and
substitution effects. When ¢ = 1, substitution and real balance effects cancel each other
and firms’ frictionless optimal prices only depend on the money stock.

Using the definition of the z;’s and approximating P(t) by [ p:(1)di, yields an explicit
formula for P(t):

P(t)=m(t}+ijl 2(t)di )

Combining this equation with (3) and denoting k= (1 — )/ ¢, yields the following simpie
expression for z;(t):
1
2(0) = 8§~ (S m(1) + wi(t) + kJ 2,(£)du = p,(0))(mod A,). )
4]
If we interpret m(t) and w(t) as deviations from their values at time (=0, and
Az(t)= 2t} — z,(0), then equation (5) is equivalent to:
1

z,(t)=8§;— (.S'i +m(1)+wlt)+ kj Az (£)du— z,-(O))(mod A (6)

a
The term k § z,du in (5) reflects the fact that firms look at the aggregate price level (i.e.
real balances and substitution effects do not necessarily cancel) when setting their prices.
Consider the case where k is positive and the money stock is fixed. If firms’ prices are
(on average) above their frictionless optimum, the i-th firm has more pressure {on average)
to raise its price. Conversely, if on average other firms’ prices are below their frictionless
optimal price then the i-th firm has less pressure to change its price. This corresponds
to the concept of sirategic complementarity. I k is negative, there is strategic substitutability
between firms.

The model underlying equation (3) can be extended to incorporate heterogeneity in
the relation between firms’ (or sectors’) behaviour and the business cycle. We introduce
this realistic feature by letting the income elasticities of the demands faced by firms differ.”

2. Allowing for haterageneity in price elasticities is a trivial extension of the case we consider.
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This leads to an expression analogous to (5) with k+1— 8, in the place of k, where 8,
is the income elasticity of the demand faced by firm i and | 8.di=1. Firms with large
values of 3; have mare incentives to raise their prices when output is above average than
firms with small values of 8,.

Using the definitions of 2,(t) and P(t), and the relation p(t}=log Y{(t} = m(t) — P(t},
it follows that output is a linear function of the average deviation of prices from their
frictionless optima:

I

y(f)=—(1+k)J z{(t)di. ()
4]

QOutput falls (rises} when the average price deviation (from the frictionless optima} rises
(falls). Any effect of money on output comes through its effect on this average.

3. PRINCIPLE OF UNIFORMITY AND NEUTRALITY

In this section we show that the principle underlying Caplin and Spulber’s neutrality
result remains valid in the presence of various sources of heterageneity across firms.
Underlying this result is the fact that once the distribution of firms within their pricing
cycle is uniform, it remains uniform as long as the sources affecting firms® prices are
independent from their price deviations.

To state the above results more precisely, we begin by defining the cross-section
distribution of firms’ price deviations at time ¢, F,(z), as the fraction of firms with price
deviations less than or equal to z.* This distribution describes the observed distribution
of firms’ percentage deviations from their optima at time 1; we call this the “distribution
of price deviations,” for short.

We start by deriving the steady-state distribution in the simplest case, where firms
have the same (S, s) bands and demand elasticity parameters, and there are no strategic
interactions. Let z, and w, denote random variables whose (joint) distribution function
coincides with the (joint) cross-section distributions of the z;(t)’s and w,{¢)’s, respectively.
Thus, for example, z, denotes the initial distribution of price deviations. Equation (6)
then leads to:

Z,=85—(S+m(t)+w,— z;)(mod A). (])

If no idiosyncratic shocks are present (w, =0 for all t) and z; is uniformly distributed on
the interval (s, §], then the distribution of price deviations, z,, is also uniform. The level
of m(t) determines the position of firms within their cycle and the number of times they
have changed their prices, but does not affect the shape of the distribution of price
deviations. CS show that real balances and therefore output cannot be affected by
monetary policy in this framework. A continuous increase of the money stock by Am
leads a fraction Am/A of firms to increase their prices by A. Thus the product of the
fraction of firms changing their prices and the size of these changes—the change in the
aggregate price index—is Am, leaving real balances {and therefore activity) unchanged.

Idiosyncratic shacks have no impact on the relation between money and output ance
the economy is at its steady state. Monetary neutrality follows from the fact that if the
initial distribution of price deviations is uniform on (s, §7], then the distribution of prices
at time ¢, z,, is also uniform on (s, §]. This holds regardless of the distribution generating

3. This distribution function is rigourously defined when the number of firms is finite. Considering a
continuum of firms should be interpreted as a notationally convenient way of dealing with a large but finite
number of firms.
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idiosyncratic shocks, as long as its increments are independent from current prices.
Intuitively, if prices start off at their steady state and the realization of idiosyncratic
shocks is not related to the position of individual units, then all these shocks effectively
do is change the relative order of firms within the (S, s) interval, without affecting the
Sraction of firms with price deviations within any particular interval.

Next we allow the width of the {S, s} bands to differ across firms; which is realistic
if, ¢.g. some firms have high costs of adjusting their price and therefore allow large price
deviations while others have small adjustment costs and change their prices more often.
In this case, the steady-state distribution of price deviations (the z,(¢)’s} is no longer
uniform. The variable that is uniformly distributed is the fraction every firm has covered
of its own pricing cycle at a given instant in time. Formally, let ¢(t)={8§,— z{t))/ x;
denote the fraction of its current ¢ycle covered by the i-th firm at time ¢, and ¢, denote
the corresponding cross-section distribution. This variable takes values between zero and
one. From equation (8) it follows that

c,=(co+%+w')(mod 1). (9)

where A denotes a random variable with the same cross-section distribution as the A;’s.
If the initial position of firms within their cycle (¢, (0) =(S; - z,(0})/A,) is uniform, then
it remains uniform under weak conditions. All that is needed is that the {joint) cross-
section distribution of bandwidths and increments of idiosyncratic shocks be independent
from fitms’ current positions within their pricing cycle, i.e. that {dw,, A) be independent
from ¢,. The proof is similar to the one we sketched above. Neutrality of money is
derived by noting that equations (7} and (9) imply that

1

w(t) =(1+f'<)(J‘0

with § ={ 8.di. The integral (expectation) on the right-hand side of (10) is calculated by
first conditioning on the value of A;, then applying the result for the case of equal (S, s)
rules,® and finally adding up over all possible values of A;. This shows that in the steady
state y(t)=1%[ Adi—S=0. Thus p(¢) is unaffected by money changes. Firms increase
their prices by amounts proportional to their bandwidths, yet this is offset by the fact
that the proportion of firms changing their prices within each group (defined as firms
with the same A's) is inversely proportional to the width of firms’ inaction bands.

Adding strategic interactions and heterogeneity in elasticities does not affect the
steady-state nature of the uniform distribution of ¢, since these only play a role outside
the steady state, when output fluctuates (see equation (5) and Section 5). We summarize
the main result of this section in the following proposition.

)L,-c;(t)di—S), (10)

Proposition 1 (Principle of Uniformity). Assume the cross-section distribution of firms’
initial positions within their ( pricing) cycle, ¢,, is (a) unifornt on [0, 1) and (b) independent
of the ( joint) cross-section distributions of idiosyncratic shocks (that fake place at time t > Q)
and bandwidths. Then (a) the cross-section distribution of firms’® positions within their cycle
at time t, ¢,, Is uniform on [0, 1} and (b) monetary policy (that increases continuously and
monotonically, and does not affect firms® pricing rules) is neutral

Proaf. Any solution to the simultaneous set of equations defined by (5) at time ¢
defines a cross-section distribution of firms positions within their pricing cycle of the

4, We use the assumption that ¢, is independent from (dw,, A) at this step.
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form (see Section 4):

C:=(Co+ m(r)+w,+;k+l—ﬁ)

where B denotes a random variable with the same distribution as the cross-section
distribution of the 8;’s and r is a constant (that depends on B, t, k, A and m(1)) equal
to zero in steady state.

Equation (11} shows that the cross-section distribution of firms within their pricing
cycle at time ¢ is the (mod 1}—sum of a distribution uniform on [0, 1) and a distribution
independent from the latter. That the resulting distribution again is uniform on [0, 1)
under these assumptions follows from standard Fourier analysis and is shown in Lemma
B1in Appendix B. The conditioning argument given in the text can then be used to show
that output remains constant over time. ||

r)(mod 1), (11)

Thus, CS’s steady-state result can be extended to the case where idiosyncratic shocks,
strategic complementarities, different (S, s) rules and different demand elasticities are
present. The aggregate behaviour of the corresponding economy—including monetary
neutrality—is indistinguishable from that of an economy without idiosyncratic shocks
where (S, 5} bands and demand elasticities are equal across firms, as in CS. Yet at the
microeconomic level there is an additional element of realism in the model presented
above. The relative position of two firms within their cycle may change over time due
to idiosyncratic shocks or aggregate shocks (or both).’ Also the empirical distribution
of prices need not be uniform since p, = z,+p¥, and the distribution of p¥ is likely to be
dominated by the distribution of idiosyncratic shocks. Furthermore, if the (S, s) bands
are different across firms, z, is not uniform either.

4. EXISTENCE, UNIQUENESS AND MULTIPLE EQUILIBRIA

When income and substitution effects cancel (k=0), equation (5} defines the (unique)
equilibrium of the {S,s) economy. This section highlights some issues involved in
determining existence and uniqueness of an equilibrium when income and substitution
effects do not cancel. In this case, firms’ deviations from their frictionless prices, the
2:(1)’s, appear on both sides of (5) and it is not abvious that this system of equations has
a solution. We first show that an equilibrium exists under very weak assumptions (Section
4.1). Next, we derive the conditions that ensure uniqueness {(Section 4.2). These conditions
require that either the degree of strategic complementarity across firms is small or that
the economy is close to its steady state. The section concludes with some speculations
on what happens when the possibility of more than one equilibrium arises. Since the
fixed (S, s} rules assumption is (more) likely to be suboptimal in this case, the results we
obtain should be viewed as a first step towards understanding multiple equilibria in
dynamic menu-cost economies with strategic interactions.

To highlight the interrelation between the degree of strategic complementarity and
the existence and uniqueness of equilibria, we assume bandwidths and demand elasticities
are the same across firms. This section’s results can be extended to the general
macroeconomic framework considered in Section 2, as we did in a working paper version
of this paper {Caballero and Engel (1989b)).

5. The latter only oceurs if the firms’ {8, s) bands have different widths since it is only then that aggregate
shocks displace firms by different fractions of their ¢ycles.

6. This does not include the stachastic bands case considered in Benabou (1989). However the principles
underlying the proofs in this paper are likely to extend to his setting.
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4.1. Existence and uniqueness

Consider again the economy described in Section 2 and summarized by the equation

1
z(£)=8 (S +m{t) +w,(1}+ kj z,du — p,(0)}mod A). (12)
a
A collection { p;(t}; i [0, 1]} defines an equilibrium at time ¢, if the corresponding z;(¢)’s
solve the system of simultaneous equations defined by {12). Thus determining whether
an equilibrium exists at time ¢ is equivalent to determining whether there exists a collection
{zi(t); i€ [0, 1]} that solves (12).
If {z;(t); i€[0, 1]} defines a solution of (12), then there exists a real number r{t) in
(—8, §] (equal to { z,(r)di) such that

z(t) =S —(§+m(t}+ w (¢} +kr(t)— p,(0)}{mod A). (13)

Hence any two solutions of (12) differ only in the value of r(¢} in (13). Thus if we
compare the cross-section densities of firms® positions within their price cycle, ¢,
associated with two different equilibria, any one of them is a mod-1 rotation of the other.”
Moreover, equation (4) guarantees that these equilibria do correspond to different price
and output levels.

Comparing equations (12) and (13) shows that praving existence of a solution at
time ! is equivalent to finding a number r—that typically depends on the instant of time
t being considered—such that

r=f z,(t)du, (14)

where the z,(¢)’s as a function of r are given by (13).

Let Y, denote a random variable with a distribution equal to the cross-section
distribution of the (§+m{t)+ w;(¢} - p.(0))’s. From (13) it follows that solving (14) is
equivalent to solving the following {fixed point) equation:

§—r=E(Y,+kr)(mod A). (15}

The left- and right-hand sides of (15) are denoted by L(r} and G.(r}, respectively. The
function G,(r) is periodic (with period A/|k|). We denote its maximum and minimum
values by G, and G,;,, respectively. Equation (15) then shows that we may restrict
our attention to values of ¢ in [S—~ G, .., §— Gnin]. Both functions take values between
m and M on this set. We therefore have that the existence of an equilibrium is equivalent
to having a curve restricted to a square (with side of length G, — Gn) intersect the
second diagonals of that square. A sufficient condition for existence of an equilibrium
is therefore that G {r) be continuous (in r). This is the case, for example, if the initial
distribution of prices and the distribution of idiosyncratic shocks are independent and
any one of them has a density.® This provides a simple characterization of any equilibrium
of an economy described by a system of equations like (12).

A calculation from first principles shows that under the symmetric equilibria assump-
tion (which implies that Y, is concentrated at one point and therefore does not have a
density) the functions L{r) and G,(r) do not necessarily cross. There often does not exist

7. The random variable Y is a mod-1 ratation of X if Y =(X +a}(mod 1) for some constant a.

8. The proof fatlows from the fact that if the distribution of ¥ has a density (with respect to Lebesgue
measure) then the continuous mapping theorem {see Billingsley (1986, p. 344)} implies that G,(r} is continuous.
The conditions mentioned above ensure that ¥ has a density.
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a solution for (12) when this is the case. At the opposite extreme, when the economy is
at its steady state and Y,{mod A) is therefore uniform, the constant r solving the fixed
point equation is unique and equal to zero, since output does not fluctuate (G, = Gin =
0}. This suggests that uniqueness depends on how near the cross-section distribution of
firms® positions within their cycle is from the steady state.

Having established that an equilibrium exists (at time ¢} if G,(r) is continuous, we
now consider additional conditions ensuring uniqueness. If two values of r solve {15),
then necessarily the slope of G,(r) (as a function of r) has to be equal to the slope of
the diagonal at some intermediate point {this is just a statement of the Mean Value
Theorem). Therefore Gi(r) is equal to —1 for some r. As G,{r) is periodic, its derivative
equal to zero at some point. Therefore there exists a unique equilibrium when Gi(r) is
continuous and Gi{r)> —1 for all r. This is equivalent to having k(1-hA,(1—kr}}> -1
for all r in [ Guin, Guaxl, Where k,(z) denotes the density of (Y,/X) (mod 1) evaluated at
2 Since the range of admissible values for k is (—1, +00),'° it follows that there exists
a unique solution whenever there is strategic substitutability {or no strategic interaction
at all). The possibility of more than one equilibrium arises anly when there eXxists strategic
complementarity between firms® pricing decisions. The condition ensuring uniqueness
derived above holds when sup,|h,(z) —1|<1/k, which {as shown in the appendix) is
equivalent to dg(z,, U)<1/k, where dg(z,, U) denotes the largest relative error made in
approximating the distribution of price deviations by its steady-state distribution.'"'? The
larger the degree of strategic complementarity, the closer the distribution of price devi-
ations must be to its steady state to ensure uniqueness. Intuitively, if all firms are bunched
together, the condition for uniqueness is that of homogeneous agents models {Cooper and
John (1988)}}; but if firms are spread out on their state space, price changes will be less
synchronized, reducing the “effective strength™ of strategic complementarities.

We summarize the results on existence and uniqueness of equilibria in the following
proposition.

Proposition 2 (Existence, Uniqueness and Continuity of Equilibria). Let Z, denote a
random variable with the same distribution as the cross-section distribution of the (w; (1} —
p0))’s ’

Existence: Assume that z, has a density (with respect to Lebesgue measure). Then
the set of simultaneous equations defined by (12) has a solution (ar time t). Further, all
solutions are such that the cross-section distribution of firms® positions within their pricing
cycle is of the form:

. Z(co+m(r)+w,+kr(t)

A ) {mod 1), (16)

for some real number r(1).

9. The expression for G4(r) fallows from Lemma B4 in Appendix B.

10. The extension of Blanchard and Kiyotaki's model presented in the appendix requires short run
decreasing returns to scale to have a bounded equilibrium. This restriction determines that k> —1 {see the
appendix}.

11. This coincides with the social increasing returns condition highlighted in conventional multiple
equilibria {see ¢.g., Hammour (1989})).

12. Note that, since the cross-section densijties correspanding ta different equilibria are rotations of one
another, dg(z,, U/) is constant across solutions. Therefore checking that dg(z,, L/) < 1/k for one solution is
enaugh to ensure uniqueness.
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Uniqueness: Assume H(a)=E(Z,+a)(mod A} is continuously differentiable.”® Let
¢, denote a random variable that has the same distribution as the cross-section distribution
of firms’ positions within their price-cycle associated with a particular equilibrium at time t.
Then a sufficient condition for unigqueness is that either k=0 or dp(c,, U} <1/k, where
dg(c,, U} denotes the largest relative error made when approximating the probability of
events under ¢, by the probability assigned to that event by the steady-state distribution.

Further, (the unique value of) output at time t is the only solution of the following
fixed-point problem:

(1) =$[E(co+m(t)+wr—(l—):b)(y(t)—y(o))) (mod 1)_5}, an

where ¢ = 1/(1+ k).

Continuity: Assume that the sample paths of the money stock are continuous and the
conditions ensuring existence hold for 0= t=T. Then there exists (at least} a set {r(t):
0=t =T} defining a sequence of equilibria (see (16)) such that the distribution of price
deviations and output evolve continuously over this period. Further, if m(t) is differentiable
and the conditions ensuring uniqueness also hold, then the (unique) output path is also
differentiable,

Proof. Noting the equivalence between equations (5) and (6), all the statements on
existence and uniqueness follow from the previous discussion. The continuity results
follow from (17) and the fact that the assumptions made above ensure that G,(r} is
differentiable (see Caballero and Engel (1989a)). |

The conditions ensuring uniqueness imply that the right-hand side of equation {17),
as a function of y, defines a continuously differentiable contraction mapping. This has
two interesting implications. First, since it is a contraction, standard fixed-point calcula-
tions can be used to calculate the value of output at a given instant of time—this is
applied in the following section. Second, since it is continuously differentiable, the unique
value of r(t) defining a solution at time ¢ {see (16))— and therefore the distribution of
firm's price deviations—evolves smoathly over time. The dynamic behaviour of the
economy therefore is consistent with the fixed pricing rules assumption, in the sense that
firms adjust their prices smoothly. Since the paths of money (and therefore the distribution
of price deviations} have no jumps, there cannot be a positive fraction of firms adjusting
their price in an infinitesimal time period.

4.2, Multiple equilibria

This section shows that more than one equilibrium may arise when k> Q and the economy
is sufficiently far away from the steady state. The argument given in Section 4.1 shows
that in this case the number of solutions of equation (12) is equal to the number of times
the periodic function G,(r), with period A/k, crosses the second diagonal bisecting the
square determined by S — Gy, and §— G, on the x-axis, and G, and Gp,.x on the
y-axis; where G, and G, denote the largest and the smallest values G,(r) can take.

13. This is the case, for example, if the density of Y in (15) is continuously differentiable and its first
and second derivatives are integrable (see Caballero and Engel {1989a)).
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It follows that the number of equilibria at time ¢, N,, satisfies:

N.= 2(Gmax — Gmin)k_
a A

L. (18)
Figure 1 shows L(r) and G,(r} (for t=0) in a particular example, where there are no
idiosyncratic shacks and the cross-section distribution of firms within their price cycle is
uniform on [§, 3], A=0-2, k=6, and m(0)=0. For this example G, =0-15 and G, =
0-05, and the number of equilibria is five.

We show in Appendix B that G,,,— Gnix is equal to Ad,(c, U), where d,(¢,, U}
denotes a measure of the distance from the equilibrium distribution of firms’ positions
within their price cycle to the steady state.'* Equation (18) then leads to:

N,z 2kd(c,, U)—1. (19)

In Section 6 we show that d;{c,, U) also can be interpreted as a measure of the
impact of monetary shocks. The close relation between this impact and the distance from
the steady state is one of the themes explored in that section.

Usually the number of solutions of (12) is not significantly larger than the lower
bound provided by (19). Equation (19) shaows that, other things equal, the number of
solutions for (12) grows at a rate approximately linear in (a) the degree of strategic
complementarity, k; (b) the degree of monetary effectiveness and—equivalently to (b)—{c)
the distance of the distribution of price deviations from its steady state,

The fact that equation (12) may have more than one solution does not necessarily
imply that dynamic multiple equilibria are possible. The solutions of (12) give all possible
distributions of price deviations an economy may have when the previous path of this
distribution is disregarded; yet the presence of menu-costs makes jumps from one
equilibrium to another costly. The economy’s path prior to the time instant ¢ may uniquely
determine the equilibrium it attains at time 2 Multiple equilibria that persist over time
must consider this dynamic consistency condition; which implies that a continuum of
equilibria must exist at some instant in time. A general statement on this topic is an open
research question.
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14. Mare precisely, d;{¢,, U)isequalto the largest absolute error made when appraximating the prabability
that 2z, belongs to any given interval {mad 1) by the probability the steady state distribution assigns to that event.
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5. OUTPUT FLUCTUATIONS AND STRATEGIC COMPLEMENTARITY

In this section we study the economy’s aggregate out-of-steady-state behaviour. We
concentrate on the asymmetries introduced by strategic complementarity, and the desyn-
chronizing features of idiosyncratic shocks. Although many of the results extend to the
more general setting described in Section 2, for expository reasons we assume that
bandwidths and demand elasticities are equal across firms. We first consider the effect
of strategic complementarity in isolation and assume there are no idiosyncratic shocks
(Section 5.1). Idiosyncratic shocks are reintroduced in Section 5.2.

5.1. Strategic complementarity and fluctuations

We begin with a simple example that motivates the issues we formalize later. The economy
is initially at the steady state described by Propaosition 1, when an inerease in the rate of
core money growth doubles firms’ bandwidths.'® Bands are symmetric before and after
the structural change. The cross-section distribution of firms within their pricing cycle,
which was uniform on [0, 1) before the change, is uniform on [, 3) after bands widen."’
Both before and after the change in core money growth, the money stock increases
manotanically and continuously.

We first consider the case where there are no strategic interactions: firms’ frictionless
aptimal prices increase one-for-one with increases in the money stock because substitution
and income effects cancel. Firms® pricing decisions do not depend on the price level per
se, but only on the money stock. Since there is a gap between the distribution of firms’
positions within their pricing cycle and their trigger level, there is a period during which
no firm reaches its trigger point and nominal prices remain unchanged. This period lasts
until the (log of the) money stock grows by A/4. Real balances, and therefore output,
increase at the same rate as the money stock during this period. By the time the first firm
reaches its trigger level—this firm was about to increase its price when the structural
change took place—firms begin changing their prices at a rate that is twice the rate of
money growth,'® and therefore output decreases at the same speed at which the money
stock is growing. By the time the last firm completes its pricing cycle, the situation reverts
again and output increases at the rate at which the money stock grows. Lacking idiosyn-
cratic shocks, this cyclic behaviour continues forever. The *“curve” carresponding to k=0
in Figure 2 shows how output fluctuates when the rate of money growth is constant. If
money grows at a stochastic rate, output increases at the same rate that the money stock
until m(1) = a/4. Qutput then decreases—at the same rate that the money stock is
growing—until m(f) =5A/4, and so on. The frequency with which firms adjust prices—
equal to m’(r)/ A in the deterministic case—is not constant anymaore, but on average it is
equal to s/ A, where s denotes the (new) average rate of money growth.

Next we consider the case with strategic interactions; to ensure a unique equilibrium
we assume k<< 1. In this case, firms’ frictionless prices grow at a rate equal to a convex
combination of the rates at which money and the price level are growing. A firm’s

15. See Caballera and Engel (1989b}.

16. This extreme example has the nice property: i-(0)—I-{0) =0 (see below), which allows us ta isolate
mare clearly the effects arising from strategic complementarities fram thase arising fram the shape af the
crass-sectional distribution.

17. This ignores the effect of the expected rate of inflation on the demand for real balances. Once this
effect is incorporated, the cross-section distribution af the ¢;'s continues being unifarm on an interval of length
1/2 (as lang as this effect is not larger than A/4}, but this interval is not centered on 1/2. Excent for a shift in
the time axis, the analysis that follows is still valid.

18. Remember that firms are now compressed in a moving interval of length 1/2.
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Output fluctuations with no idiosyncratic shocks

frictionless price is less sensitive to increases in the money stock for larger values of the
strategic complementarity parameter k. Likewise, the speed with which a firm moves in
its pricing cycle becomes more sensitive to the changes in price level as k becomes larger.
Following the widening of bands, there is a period during which no firm adjusts its price,
just like with k=0. Since the price level remains constant during this period, firms’
frictionless prices grow slower than in the case without interactions. This implies that
real balances build up and output grows for a longer period. By the time firms begin to
adjust their prices, output falls sharply. The price level begins to increase (at a speed
twice as large as the growth rate of money) and therefore firms’ frictionless prices increase
faster than they would if firms only considered changes in the money stock. Since the
crass-section distribution of price deviations maoves faster during the downturn, this period
is shorter than it would be with kX =0. When all firms have completed their first pricing
cycle, output begins to increase and the cycle starts again.

Figure 2 shows output fluctuations when money grows at a constant rate, for various
degrees of strategic complementarity.'® Two regularities emerge from this figure and the
preceding discussion. First, output increases {decreases) when the rate at which firms
are changing their prices is smaller (larger) than the corresponding steady-state rate.
Second, ather things equal, output grows for a langer period— and declines for a shorter
periad—the larger the degree of strategic complementarity. These insights hold—without
idiosyncratic shocks—for any distribution of firms within their cycle. Later in this section
we show that:

o 1=£00)
YO 0 o)

where f, denotes the cross-section density of firms’ positions within their pricing cycle at
time ¢t and ¢ =1/(1+ k). Since the denominator is positive (this is required to ensure
uniqueness), the numerator determines the sign of y'(¢) and the strategic complementarity
parameter, k, the magnitude of this rate of change.”

m'(t), (20)

19. Bandwidths are equal to 0-2 and m(r} =0-01¢ in this figure.
20. If the path of money is not differentiable, replace y’ for dy and m’ for dm in the formula.
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The asymmetry described above implies that, other things equal, the average length
of expansions grows with the value of k. This is valid more generally than this example
may suggest. Given an initial cross-section distribution of firms within their pricing cycle,
¢, and a degree of strategic complementarity k, let Iz{k) denote the fraction of time
output is growing and I~ (k) =1— Iz (k). The difference between Iz(k) and I-(k) measures
the degree of asymmetry in the lengths of expansions and contractions. Assume there
are no idiosyncratic shocks and the money stock grows at a constant rate—the expression
that follows holds (approximately) in expectation when the stochastic process generating
the money stock grows at a rate that is independent from. the current level of output. Then:

lg (k) —lc (k) = Ig(0) = [(0) + kdy (¢, U, (21)

where dy (¢, U) denotes a measure of distance—known as the variation distance—between
¢, and the steady-state uniform distribution U*' This result is proved in Lemma B10 in
Appendix B. It shows that the asymmetry in fluctuations grows (linearly) both with the
economy’s distance from the steady state and the degree of strategic complementarity.”

When the economy is expanding, most firms are at the beginning of their pricing
cycle and, other things equal, the larger the degree of strategic complementarity, the
larger the incentive firms have not to adjust their prices. Therefore expansions and their
duration are reinforced by the presence of complementarities among firms. Similarly,
contractions are associated with periods where firms change their prices at a rate faster
than average. When prices are strategic complements, the larger the number of firms that
change their price, the larger the incentives other firms have to do the same. It follows
that contractions are shorter and sharper the larger the degree of strategic complementarity.

The magnitude of the effects described above is proportional to the difference between
the rate at which firms are adjusting their prices and the corresponding steady-state rate,
and this is proportional to the distance of the distribution of price deviations from the
steady state. This explains why the asymmetry between the lengths of expansions and
contractions increases with the distance from the steady state.

5.2. Idiosyncratic shacks and fluctuations

When the economy is forced away from the steady-state described in Propaosition 1,
idiosyncratic shocks (whose increments do not depend on firms’ current prices) bring the
distribution of price deviations closer to its steady state and therefore dampen output
fluctuations. The discussion of this mechanism is given in Caballero and Engel {1991),
and extended here to consider the presence of strategic interactions. If shocks are
non-stationary, and no structural change takes place, the cross-section distribution of
firms’ positions within their pricing cycle converges to the uniform distribution.® As time
passes, the economy resembles more and more the steady-state description given in
Propaosition 1.

Let us consider again the example where an increase in core money growth leads to
a doubling of firms’ bandwidths. We assume idiosyncratic shocks are normally distributed

21. The variation distance between ¢, and LS is equal to sup 4|Pr{¢, € A} — Pr{ U € A}|, where the supremum
is taken over all Borel sets A. Note that, since there are no idiosyncratic shocks, dy.(¢,, Uf) remains constant
over time.

22, The qualitative nature of this result may be expected ta extend to the case where adjustment rules
are two-sided, as long as core-inflation is positive.

13. Given the farm of the distribution of price deviations derived in Section 4, the carrespanding praafs
follow directly from Caballero and Engel (1991).
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with zero mean and variance growing linearly with time.”* Figure 3 shows how output
fluctuates on its way to the steady state in the presence of idiosyncratic shocks for three
different values of the variance (time is measured in years).™ It is apparent from this
figure that fluctuations dampen out faster the larger the (instantaneous) variance of firm
specific shocks. Since shocks are non-stationary, their de-synchronizing effect increases
without bound, hence output converges to its steady-state level and the distribution of
firms within their cycle approaches the steady-state distribution. The larger the variance
of idiosyneratic shocks, the faster the economy approaches its steady-state distribution.

Figure 4 shows the path of output for three different degrees of strategic complemen-
tarity—and the same variance of idiosyncratic shocks. Figure 4 can be interpreted as the
figure that results from adding idiosyncratic shocks (with instantaneous standard deviation
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Qutput fluctuatians, idiosyncratic shocks and strategic complementarity

24, Strictly speaking, we should use a truncated normal (in any interval of length df) with truncatian
paint at —dm(t). This is of second-order impertance when m'(¢)» g2 This approximation is also used in
Propositian 3 below.

25. These figures assume & =0-40, A =0-20 and m(t) =0-1¢
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equal to 0-05) to every one of the output paths considered in Figure 2. It is apparent
that while the economy is sufficiently far away from its steady state, the asymmetry
between the lengths of expansions and contractions persists in the presence of idiesyncratic
shocks. This is consistent with equation {21}. In the following proposition we extend
equation {20} to the case where idiosyncratic shacks are also present.

Propasition 3. Suppose the cross-section distribution of idiosyncratic shocks—the
wy(t)'s in equation (3)—is normal with zero mean and variance $*a*t, with ¢ =1/(1+ k),
and let f,(c) denote the density of ¢,.”*

Then:

A -AU N () - xfl17)
1-(1-¢)fQ17)

where fi(c) denotes the derivatives (with respect to c) of f,(c), and x> = ¢ c*/2A,

y'(t) (22)

Proof. See Lemma BY in Appendix B. |

Equation (22) corresponds to (20) with an additional term in the numerator. This
additional term considers the fact that now firms are moving within their pricing cycle
not only because of increases in the money stock, but also because of firm-specific shocks.
As the economy approaches its steady state, both {1 —£,(17)} and fi{17} are tending to
their steady-state values (zero). Since the monotonicity assumption implies that the
aggregate drift must be larger than the standard deviation of instantaneous shocks, the
first term in the numerator of (22) dominates over the second term, and the discussion
from Section 5.1 extends to the case with idiosyncratic shocks.

In sum, when an (8§, s) economy with idiosyncratic shocks is forced away from the
steady state described in Proposition 1, output oscillates on its way back to the steady
state. Expansions are flatter and contractions are more pronounced {but shorter lived),
the larger the degree of complementarity between firms’ pricing decisions and the further
away the economy is from its steady state.

6. AVERAGE NEUTRALITY

The previous section showed that monetary shocks are generally not neutral when the
economy is outside its steady state. Yet knowledge of the level of output (i.e. of
— (1+k) | zdi) aver some period of time (so as to know its derivative) is necessary to
take advantage of non-neutrality. In this section we show that maney is neutral on average
when there is no information on the location of the distribution of price deviations. This
serves as a threshold since any amount of information breaks the average neutrality result;
however no statement about optimal design of monetary policy should be directly
extrapolated from this. If the monetary authority has some information and decides to
use it on a continuous basis, firms will most likely modify their behaviaur.

26, It Fallows from the madel derived in Appendix A that w, = ¢, where the v, correspond to 4 linear
combination of the {logs of the) actual shocks; see Section 2 and Appendix A. The assumption made above
is therafora equivalent to v, having variance &°1.
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We also show that the potential magnitude of the effect of a monetary shock increases
with the distance of the economy from its steady state. This ties in the various notions
of distance that appeared in the preceding sections. For simplicity we assume that
bandwidths and demand elasticities are the same across firms,?” and that the cross-section
distribution of idiosyncratic shocks is narmal (with a variance that increases with time).

We formalize the notion of money neutrality through the elasticity of output with
respect to (continuous) money changes. This measure is also useful when defining various
indicators of the potential impact of monetary shocks. Its value at time t is equal to:

LMY o dyme), )

Y dM dm
where y(m, ¢t} denotes output as a function of the current money stock, m, and the
distribution of idiosyncratic shocks accumulated until ¢ This index is short-sighted
because it only reflects the effect of money on the current level of activity.”® It also
assumes that the increase in the money stock does not affect the average growth rate of
money, hence firms' inaction range. This index measures the effect on output of an
infinitesimal, continuous increase in the money stock.

From equation (7) it follws that I, is equal to minus (1+ k) times the derivative of
[ z.di with respect to the (logarithm of the) money stock at that instant in time. Therefore,
if on average prices have been changed recently, an increase in the money stock raises
real balances and total autput (i.e. lowers [4 zdi): I,>0. Conversely, an increase in the
money stack is likely to reduce output if on average prices have not been changed for a
long time: I, < 0.

Defining neutrality at time ¢ as having I, equal to zero is too general. An infinitesimal
increase in the money stock has no effect on activity every time output reaches a locally
extreme (maximum or minimum) value and therefore I, is equal to zero at these instants
in time {(e.g. see Figures 3 and 4).* Yet the index of (instantaneous, myopic) monetary
effectiveness, I, is different from zero an instant of time later. One measure for the
distance of the economy from its steady state at time ¢ is the largest value I, could take
aver all possible realizations of the (continuous and increasing) output path m{s); s=r.
Let therefore:

M,(t)= SUPmcsi=mis), sue I(m(s),s).

We show in Lemma B11 in Appendix B that M,(f) is equal to (1+k) times the largest
relative error made when approximating the cross-section distribution of firms within
their pricing cycle, ¢, by its steady-state distribution. The condition ensuring uniqueness
derived in Section 4 may now be interpreted in the following way. Oncethe (instantaneous)
effect of a monetary shock, as measured by M,(t), is smaller than {1+ k)/k, there exists
a unique equilibrium.

Next we study to what extent an uninformed policy maker can take advantage of
the non-neutrality of money when the economy is away from its steady state. Assume
that the order in which firms change their prices is known, yet the exact position of any
firm within its pricing cycle is not known. This is equivalent to knowing the distribution
of firms positions within their (5, s} bands, except for a lacation parameter, ¢, that may
take values between 0 and A. The effectiveness of monetary policy depends on the actual

27. The case with different bandwidths was considered in a previous version of this paper.

28. Generating a boom today comes at the cost of a recession, usually milder than the boom, in the
future. Intertemporal tradeoffs issues like this one are addressed in Caballero and Engel {198%a}.

29. This assumes the path of autput is continuous.
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value of ¥ Denote the corresponding money-elasticity of output by I(4). Then (see
Lemma B12 in Appendix B)

j L(¢)dy =0. (23)

a

This means that if the policy maker assigns equal probability to all possible locations of
the distribution of firms® positions within their (S, s) band, then monetary policy is neutral
on average. The magnitude of (infinitesimal) monetary shocks may be expected to be
larger the further away from the steady state the economy is. A measure of the average
magnitude of monetary shocks (at time ), when the policy maker has no knowledge
about the location of the distribution of price deviations, is given by:

Mz(f)=J0 [ 1.(4r)ldy.

We show in Lemma B13 in Appendix B that M,(t) is equal to (21/¢) times dy (¢, U},
where dy(¢,, UJ) denates the largest error made when approximating probabilities of
events under z, by the corresponding probability under the steady-state distribution. This
is the notion of distance—known as the variation distance—related to the asymmetry
between the lengths of expansions and contractions in Section 5.1. This asymmetry
therefore grows with the size of the potential effects of {infinitesimal) money shocks.

An alternative measure of monetary policy effectiveness at time ¢ is the difference
between the largest and smallest values output can take—from time t onwards—over all
possible continuous, increasing paths of m(t). This leads to the following index of
monetary policy effectiveness:

My(1) = sup ucrzmen ¥{m (s}, s) —inf e men y(mis), 5).
The index M.(t) is equal to {1+ k) times the largest error made when approximating the
probability of intervals (mod 1} under ¢, by the corresponding probability under the
steady-state distribution {see Lemma B7 in Appendix B}. The corresponding concept of
distance between random variables is known as ““diserepancy”—it is proportional to the
lower bound for the number of equilibria derived in Section 4.

Average neutrality holds independently of how far from the steady state the economy
might be. Increasing money without worrying about the current output level has no
average effect on output. The difference with full neutrality is that M,(f), My(t) and
M;(t)—and typically I,—are different from zero when the economy is not at its steady
state. Increases in the money stock raise output during recessions but lower it during
booms so that these effects cancel each other. It may appear that this contradicts the
result we derived in the preceding section, according to which booms are longer—and
recessions shorter—the larger the degree of strategic interactions. Yet, as shown in
Propaosition 3, the speed with which output grows during expansions is decreasing in the
degree of strategic complementarity. Similarly, the larger the value of £, the faster output
falls during contractions. These effects exactly cancel off the asymmetry between the
lengths of booms and recessions so that monetary policy is neutral on average. An
absolutely uninformed monetary authority cannot exploit (on average) situations where
M, (), M,(t) or M;(t) are greater than zero.

7. CONCLUSION

This paper began by generalizing Caplin and Spulber's (1987) steady-state money-
neutrality result, by allowing for strategic interactions and various sources of heterogeneity
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across firms. We then studied non-steady-state dynamics, ficst showing that whether a
unigue equilibrium can be guaranteed or not depends not anly on the degree of strategic
complementarity but also on how close the distribution of firms’ positions in their price
cycle is from the steady state. Next, we argued that strategic complementarities introduce
realistic asymmetries into the business cycle; the stranger these complementarities are,
the longer and smoother are expansions relative to contractions. Finally we showed that
the conditional correlation between money and output is typically non-zero outside the
steady state, however the unconditional correlation remains zero. In other words, the
steady-state neutrality result no longer holds for every time r but it holds on average.

Throughout the paper we assumed that the band-policy remained invariant to the
experiments we performed, and concentrated on distributional issues. For the mast part,
allowing for different bandwidths for different parameters values is unlikely to change
the qualitative features of the results.®® This is not necessarily true, however, when we
study the out-of-steady-state behaviour of an economy with strategic complementarities,
since here the first-best policy is likely to involve endogenous changes in firms’ bands
(i.e. fluctuating bands). In this sense, our results should be viewed as a first step towards
understanding the complexities of stochastic dynamic menu-cost economies with
heterogeneous agents who are strategically related.

APPENDIX A

This appendix briefly presents the basic maodel underlying the macroeconomic framework used in the paper.’!
To shorten the formulae, the derivation from first principles of the demand side of the model is omitted.

There is a continuum of sectors indexed by the subscript i €[0, 1], and within every sector a continuum.
of firms indexed by the subscript j [0, 1). Each sector faces at each time t the following isoelastic demand
function:

vi()= (g—%) ¥, (24)

with Y4(¢) the quantity of the {composite) good i demanded by consumers, g,(t) the price of the (composite)
good i, Q{t) the aggregate price index, Y(t) agaregate expenditure, £/{t) the idiasyncratic shock to the demand
far goods of sector i, and 8 the price elasticity of the demand for good &

Aggregate expenditure (equal to aggregate production in this model} is praportional ta real balances:
M{t)
)’
with M denoting some measure of money holdings. Sectoral demands, as a function of relative prices, real
balances, and idiosyncratic {sectoral) shocks, are obtained by replacing {25} in (24):

()" ()
Y.—(!]—(Qm o &(0). (26)

Firm j in sector i faces a demand, Y‘,-j(t), that depends on its relative price {within the sector), gq,(¢}/q,(¢},
and on the tatal demand for the sector's composite good.

¥4(0) = (‘::T(:)))_”Y:*m, @)

Y(t)=

(25)

30. As long as the value functions satisfy standard regularity conditions.

31. This is a modified version of Blanchard and Kiyotaki's (1987) (from now on BK) madel. One
difference with BK, and ather similar models, is that consumers are assumed to solve a twa-stage CES-budgeting
problem within each peried. They first decide how much to spend in each sectar. Then they decide how to
allocate these expenditures within each sector. Firms do not collude, and therefore do not explait the
monapolistic structure of the first stage. This modification expands the parameter space (demand elasticities}
for which the results can be applied {an alternative way to achieve this is by changing the elasticity of output
with respect to real balances).
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where 1 = L is the price elasticity of the demand faced by firm j in sector i In this context the frictionless price
of a firm with real costs of producing ¥,(f) equal to Y 5({)e{¢), where c is a constant, @ a parameter greater
than ane that reflects increasing marginal costs and e,(t) a cost shock that affects all firms in sector i equally,
is:

L ) T 28
Q(!) Q(f) Q(I) Y‘(t} el(f)a (28)

where A=(5 —1/can)"' " All firms in sector { are affected by the same shocks, have the same technology,
and face identical demands. Therefore their equilibtivm prices must be the same. Furthermore, if g,,(1) = g,.{¢)
for all {j, j') &[0, 1), then this must be the value of the sectoral price index, g,(¢). Replacing this equilibrium
result in (29) eliminates the sub-index j from now an:

g () a1 yrd -t
——=A Yy e (1) 29
00) (el (29)
Equation (26) pravides an expressian for Y7(r). Substituting this in (29} yields:
gt [ (M(z)) ]*
=l A Vity |, 30
O R AR @0

with ¢ =(a—1)/(1+8(a—1))=0 and V()= {)e{)"1*7". Withaut loss of generality we assume that
M{0)=Q{0)and A=1.

Working with the logarithms of the variable makes the algebra clearer. Therefare the following notation
is introduced; o,(r}=log Vi(1), m(t)=log M(1), pf(s)=log g¥(1), p.(t)=log 4.1}, P{1)=log Q(1), r(¢)=
gty — P(t) and r¥=p¥(e}— P{r), where p¥ denotes the (frictionless) optimal price. A simple Cobb-Douglas
apgregate price index (i.e. fixed weights) is adopted: P(r)=|! p,(1)di??

When a “menu cost™ is introduced, firms follow some sort of (S, s} rule. The case of fixed (S, 5) bands,
which is an approximation to the aptimal pricing rule, is considered here. They can be praved to be first best
only in very special cases in the context af our madel. However, finding the true rule is technically very difficult
and we have not yet faund a solution {we suspect that firms haven't either). Nonetheless, very interesting
results can be derived without questioning the optimality of the proposed (8, s) rule too much.

An important role is played by the difference of the (log aof the) actual price charged by sector i and the
{log of the corresponding) frictionless optimal price. The variable 2,(t} is defined as z, (¢} = p,{t) — p*(1), z(t)
{5, §].

Simple algebra yields:

pAn) = ${ml) = P{))+ do, (4} + P{2) + 2,(4). (31)

Integrating with respect ta i on both sides of {31}, imposing that {since shocks are idiosyncratic) |} v.(¢)di =9,
and using the definition of the aggregate price index, yields:

F’(r)=!‘l'!(.r:)+i—|‘l 2.(t)di, (32)
d Ja

where [} z,(¢}di denotes the average percentage departure of the actual price of each sector with respect to its
aptimal price at time t. Fram this is fellews that:

p?(z)=m(r)+m(r)+(l{¢—‘°” 2400 di (33)

o
and
—z{t)+8 =S —(p(£) - p{O)}+ (pF{1) — p.(O}).

Let A =8—35 denote the width of the range of percentage deviations of actual prices from their frictionless
optismum. Taking (mod A) on both sides, and using the fact that —z,(r}+ 5 belongs to [0, A) and p,(0) is a
multiple of A, yields:

7(t) = S —{S+p¥(£)— p(0))(mod A). (34)

It is easy to see that z;(¢) e (s, §] since duve to the properties of the modulus aperatar, the second term on the
right-hand side of {34) belongs to [0, o).

32. This index should be interpreted as an approximation of the more appropriate CES-index.



CABALLERO & ENGEL OQUTPUT FLUCTUATIONS 115

Finally, substituting {33) into (34) and denoting k={1— ¢}/ ¢ vields the fundamental equation af this
paper:
1

7{)=§ —(S+M(I) +¢w.—(f}+k.|‘ z,{t)du FP.-(C‘])(mod A). (35)

o
If we interpret m{¢) and 4,7} as deviations from their values at time t =0, and let Az{f) = z,(1) — z,{0), equarion
(35) is equivalent to

1

{1 = S—(S+ w{t) +¢ui(r)+k‘|‘ Az, (rydu - z,.((]))(mod A). (34)

a
Equations (5) and {(6) are then obtained by setting w,{¢) = oo, ().

Substituting ¥{¢)* for ¥(¢) in (24), and tracing the steps of the derivation leading ta (35) and (36),
yields apalogous expressions for z,{t), with k+1—8; in the place of k&

APPENDIX B

Lemma Bl. Let U denote a random variable uniform on [0, 1], X any random variable independent from
U, and Y={(X+ U)mod 1). Then Y is uniform on [0, 1].

Proof. Since ¥ takes values in [0, 1], it suffices to show that its Fourier coefficients are equal ta those
of a distribution uniform an [0, 1]. Thus it has to be shown that all nan-trivial Fourier coefficients of 2 are
equal to zera. A calculation from first principles shows that, given any randem variable X, the Fourier coefficients
of X and X {mod 1) are the same. Therefore the Fourier coefficients of Y are equal to the product of those
af X and U, Since U is uniform on [0, 1], its non-trivial Fourier coefficients are equal te zero. It follows that
all non-trivial Fourier coefficients of ¥ are also equal to zero, completing the proof. §

Lemma B2. Let X be a random variable whose density f(x} has bounded variation. Then X{mod 1) also
has a density, f,(x), and

filx) =%, flx+k). {37
Now assume that the characteristie function of X, f(z), satisfies ¥, =, | f(2mk)} < +oo. Then:
£u) =1+ 28 4 RU2k)e 2754, (38)

where TR[ 2] denates the real part of the complex number z.

Proaf. Equation (37) is a well known result in probability theory, for a proof under the assumptions
made above see Proposition 3.1 in Engel (1992).

Next we derive (38). Since the Fourier coefficients of X and X (mod 1) are the same, it follows that the
Fourier coefficients of X(mod 1} are summable and X{mad 1} has a continuous density, f,{x), with bounded
variation. Applying Poisson’s Summation Formula (see Butzer and Nessel (1971, p. 202) for the version being
used here) leads to the expression for fi{u). |

Lemma B3,  Let X denote a random variable whose characteristic function f (z) satisfies ¥ ., | fo )| < +oa,
Let G(a) = E[{X +a)(mod 1)]. Then:

1 1 1. .
G(ﬂ)=£—_2k=| TELA2ak)], {39
kS k

G'(a}y =28 1oy RUFQ2R)], (40)
where F[z] and R[z] denote the imaginary and real parts of the complex number z, respectively, and x {mod 1)

the difference between x and the largest integer less than or equal than x.

Proof. Substituting this expression for f,(x) derived in (38) in E[ X(mod 1)] = | xf,(x)dx, interchanging
the order of integration and summation, and integrating the resulting terms, leads to the expression for Gia).
Differentiating under the summation sign,* leads to the expression for G'(a). ||

Lemma B4, Assume X satisfies the assumptions in Lemma B3, let f,(x) denote the density of X(mod 1),
and define G(a) as in Lemma B3, for 0=a=1. Then:

G'la)=1-f(1-a).

33. Additional smoothness assumptions are required at this step, see Caballero and Engel {1989a).
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Proaf Follows directly from (40) and (38). |

Lemma BS. Let P(A) denote a probabifity ¢ an [0, 1] that has density f(x) with respect ta Lebesgue
measure, and let Q(A) denote lehesgue measire on the unif interval. Define:

P(A) '
do (P, Q) =sup, |-——-1], {41)
=P Q Pa Q(A)
where the supremum is taken over all sets A in [0, 1] with pasitive Lebesgue measure™ Then:
dr (P, Q) =sup.lf(x} - 1. {42)

Praof. Since lim 4, _q P([x, x+ dx])/dx = f{x), except for x belonging to a set of Lebesgue measure zero
(see Billingsley (1986, p. 439)), letting A=[x, x +dx] on the right-hand side of (41) shows that do(F, Q)2
sup,|f(x)—1|.
The remaining inequality needed to establish (42} follaws from:
Jalf(x) = 1)ax
Q(A)

_Lalf60 ~ 1hdx
T QA

fasup.lf(x)—1idx
h Q{A) . f

=sup, [f(x)-1].

P(A) ' _
QA

Lemma B6. Let X denote a random variable taking values in [0, 1] that satisfies the assumptions of Lemma
B3, denate its density by fi{x), and define G{a) as in Lemma B3. Let

dy(X, U)=sup,|Pr{x € A} - m(A)}.

Denate the notion of distance—from X to a distribution U unifarm on [0, 1]—known as discrepancy, where the
supremum is taken over all sets A in [0, 1] that are either of the form [a, b] or [0, alulb 1],0=a<b=1, and
m{A) denotes Lebesgue measure.

Then:

dy (X, U) =sup,G{a)—inf,G{a). {43}
Proaf. For0=a<h=1in[0,1] we have:
b
Gib)—-Gla)= J‘ G'{u)du.
Using Lemma B2 and a change of variables:
a4
=(d-c)- J Jilu)dy

=ml[c, d]}-Pr{X e[c, d]}, (44)
=Pr{X e[0, c]luld, 1]} - mi[0, c]u[d, 1]}, (45)
where d =1—a and ¢=1—b. Equation {43) now follows from {44} and {45). |
Lemma B7. With the notation of Section &:

My(0) =sup ezmen Y(M{8), 8) —inf oz men y(mis), 5).

34, Strictly speaking all the suprema mentioned in this lemma should be essential suprema.
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Proof. Let X and Y be independent random variables and denote (Fyf{a)= E[(X +a){mod 1}] and
Gxryla@)=E[{X + Y +a)(mod1)]. Lemsna B6 and the fact that idiosyncratic shocks are normal {with a
variance that increases over time) imply tht all that needs to be proved is that

sup, Gy ,yv(a) Zsup,Gyla} (46)
and
inf, Gy, yv{a)=inf, Gy{a).

Since both proofs are very similar, we only prove (48).

Conditioning on ¥ = ¥ and using the independence assumption yields:

Gxiv(b) = I Gx(y+b)dF(y)

= I {sup, Gx{a)}dF{y)

= sup, Gy (a).

Equation (46) now follows from the fact that the latter inequality holds for all . |

Lemma B8. Given a random variable X, define:
hia, b)=E[({X + Z, +a){mod 1}], (47)

where z, denotes a random variable independent from X, normal, with zera mean and variance b. Let f(y) denote
the density of Y ={X + Z,)(mad 1) and [*(y) its derivative. Then:

h o
a-g(a, b)=3z(f(1-a}-1).
Proaf. Lemma B3 implies that:
1 1 1 —2miklp 2rka
h(a,b) =2 ——Tizr €I k)], (48)

where f "« (1} denotes the characieristic function of X. Straightforward calculations based upon {48) show that

ah 1 3h

a_b(a’ b)=£a?(a, B).

Substituting the expression that is obtained from Lemma B4 for #h/3a in (49) completes the proof. |
Lemma B9 (Proof of Propaositian 3).

Praaf. Equation (17) in the main text is equivalent to:

m(e) —(1 - ){p(1) —1{(0)) x_’f)
A A

A
=ZH 50
¥y P ( (50)

where H{a, b) is defined as in Lemma B8, with ¢, in place of X, and x* = ¢*a*/2A. Implicitly differentiating
bath sides of {50) with respect to ¢, using Lemmas B4 and BS to evaluate 3H /da and 3H /4b, and rearranging
terms leads ta (22) in the main text, ||

Lemma B10 (Proef of Equatian (21)).

Proaf. From the definition of fz(k) it follows that:

1y
!'E(k)=lJ' I{m:a—y<0}dm, (51)
A O am
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with [{A} denoting the indicatar function of set A. An argument similar ta that given in the proof of Propasition
3 shows that:

ay__(-£00)

. 32
am T (- o)1) o2
Since the denominator in (52) is positive, equation (51) is equivalent to:
i —1 - _
15(:():%[ l{m:ﬁj(m a "’)(:’(’") ”(O)))q}dm, (s3)
a

with f(c) denoting the density of ¢,. Introducing the change of variable v=m — {1 — $)y(m) in (53) and using
(52) to evaluate dm in terms of do leads to:

ot o)l o)

=fs(0)+kj T{folu) < 1H1 — folu))du.
[+

The proof now fallows from two elementary properties of the variation distance. First, dy(c,, )=
& I fylu) <141 = fo{u))du. Second, since ¢, is obtained by rotating ¢y, du{c,, U)=dy{cy, UF). The identity
above then implies that

(k) =1(0)+ kdy(c, U). |
Lemma B11. With the notation introduced in Section 6 we have
M (t)={1+Kk)dg(c,, L.

Proof. See Section 4 in Caballero and Engel (1991). |
Lemma B12. With the notation of Sectian 6:

J‘ L{gldg=0. {54}
a

Proaf. Let G{a)= E[(X +a){mod 1}], with X =¢;+{w,/A). Equations (16), (6} and (5) imply that
yim, t)=—(1+k){G{I 1), with | equal to a constant {that depends on ¢). It follaws that I{) = G+ ).
Equation (54) now follows from this identity and the {trivial) fact that ('{4) is periedic, with period equal to
one. |

Lemma B13. With the notation af Section 4:
4 24
!L("’)'d’?&:EdV(Cn uy. (35)
i

Proof Using the same change of variables as in the proof of Lemma B10 leads to:

j H ()| dy =%J. [1—f(s)\dy,

where f,(») denotes the density of ¢,. Equation {55) now follows from an elementary propetty of the variation
distance. |
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