What do “Let’s Make a Deal” and
“Ask Marilyn” have in common?
A probability problem.

Monty Hall’s Probability

Puzzle

Eduardo Engel and Achilles Venetoulias

Introduction

The game played on the TV show
“Let’s Make a Deal”” (with Monty
Hall) gives rise to the following in-
teresting puzzle. There are three
curtains, an announcer (Monty)
and a player. One of the curtains
contains a valuable prize and the
other two are empty; only Monty
knows where the prize is. Players
win the prize if they guess correct-
ly which curtain contains the
prize. Initially the player selects a
curtain. Then, Monty opens an
empty curtain that the player did
notchoose. Having eliminated that
curtain from contention, Monty of-
fers the player the option to select
the remaining third curtain as a
final choice. Then, the player must
decide whether it is an advantage
to switch curtains or to insist on
the original guess. At this point,
we suggest the reader take a
minute to ponder the problem and
decide whether switching in-
creases the chances of winning.
The decision the player faces is
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a tricky problem in elementary
probability which has become a
popular puzzle known as ‘“‘the
three curtains puzzle.” It first ap-
pears to most people, including
the authors of this article, that the
player should be indifferent to
which curtain is selected because
both of the unopened curtains
have the same probability of con-
taining the prize. This position of
indifference appeals tointuition in
an apparently compelling manner.
In Cecil Adams’ words (see his
““Straight Dope” column of
November 23, 1990):

If there are three curtains the
chances of picking the right one
are one in three. Knock one out of
contention and the chances of
either of the remaining curtains
being the right one are even —
one in two.

More careful examination of the
conditional probabilities reveals
that the indifference argument is
wrong. The player’s first guess
contains the prize with probability
1/3 whereas the other curtain con-

tains the prize with probability 2/3
(this fact is proved in the next sec-
tion). Thus the player is not only
better off by switching to the third
curtain but, by doing so, doubles
the chances of winning the prize.

The three curtains problem ap-
peared firstin a Letter to the Editor
by Steve Selvin in The American
Statistician in 1975, Recently, the
problem received wide public at-
tention after Marilyn vos Savant
posed, and correctly answered, the
puzzle in her ‘“Ask Marilyn”
column of September 9, 1990. Two
more Ask Marilyn columns have
followed (December 2, 1990 and

"February 17, 1991) in which

Ph.D.’s from across the country
claimed that Marilyn was wrong
and that the indifference position
was correct. The following ex-
cerpts are taken from those
columns:

May I suggest that you obtain and

refer to a standard textbook in

probability before you try to

answer a question of this kind
again.
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If one curtain is shown to be a
loser, that information changes
the probability of either remain-
ing choice to 1/2. As a profes-
sional mathematician, I'm very
concerned with the general lack
of mathematical skills. Please
help by confessing your error.

You are utterly incorrect about
the game-show question, and I
hope this controversy will call
some public attention to the
serious national crisis in mathe-
matical education.

Prompted by a reader who
“stumbled upon” the ‘‘Ask
Marilyn” column while “perverse-
ly flipping” through the Parade
Magazine section of his Sunday
newspaper, Cecil Adams took the
wrong side in his first column on
this puzzle (see the quotation
above). Two columns followed: In
the first he corrected his mistake,
and in the second he dealt with
letters from readers incredulous of
seeing him abandon the position
of indifference (and join sides
with Marilyn).

This article discusses the three
curtains problem and outlines
some interesting variations. First,
we attempt to dispel any doubt
that if the player changes curtains
the player is twice as likely to win
the prize by staying with the
original choice. Then we relate the
problem to a version of the three
prisoners’ dilemma. Finally, we
discuss entertaining variants.

Solution

There are many arguments for
verifying that switching curtains
offers an advantage. Perhaps the
shortest, though not the most in-
tuitive, argument is the following,
Initially all three curtains are
equally likely to contain the prize
and the player has a 1/3 chance to
get the prize on the first guess.
Suppose that the player decides to
stay with the first guess, after the
announcer opens another curtain.
Clearly, nothing changes about the
curtain the player has already
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selected. In particular, the prob-
ability of getting the prize with that
curtain is the same as before (1/3).
But now there are only two can-
didate curtains and one of them
contains the prize with probability
1/3. Therefore, the other curtain
contains the prize with probability
1 - =2 Deciding never to switch
curtains is equivalent to not
having the option to switch; hence
the odds of winning by not switch-
ing are one in three.

A less elegant, but perhaps more
convincing solutionistolistall the
possible outcomes of the game
(this, in fact, is Selvin’s original
solution) [see Table 1]. Counting
all outcomes shows that the prob-
ability of winning is 6/9 =2/3

when the player changes curtains.

The critical element behind the
solution of the puzzle is that
Monty knows both which curtain
contains the prize and which cur-
tain the player has chosen before
he opens a curtain. He is deprived
of the opportunity to eliminate the
player’s guess even if that curtain
is empty. Therefore, Monty’s
choice does not contribute any-
thing to the probability that the
player’s curtain contains the prize.
On the other hand, the fact that,
having had the opportunity to do
so, Monty did not open the curtain
which the player did not choose
does increase the probability of
finding the prize behind that cur-
tain. This observation provides a
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heuristic explanation for why the
curtain which the player did not
choose is more likely to contain
the prize.

Monty Hall himself is credited
by Selvin with providing the fol-
lowing solution to the puzzle his
show originated. Monty begins by
confessing that he is not “a student
of statistics problems,” and by
(wrongly) finding fault in Selvin’s
original argument. He goes on to
add: “Oh, and incidentally, after
one curtain is seen to be empty,
the player’s chances are no longer
50/50 but remain what they were
in the first place, one out of three.
It just seems to the contestant that
one curtain having been eliminated,
the player stands a better chance.
Not so.” Selvin remarks that it
could not have been said better!

Monty’s Behavior

Several assumptions on Monty
Hall’s behavior underlie the
counterintuitive solution to the
three curtains problem. One of
them is that Monty knows which
curtain contains the prize. If this
were not the case, and all the
remaining assumptions were the
same as before, the indifference ar-
gument would be correct indeed:
The player’s chances of winning
the game would be the same if the
player switched curtains as if she
did not. In both cases, the player
would win one third of the time
and lose one third of the time. The
remaining third of the games
Monty would accidentally open
the curtain with the prize and the
game would have to be played
again.

Another major assumption is
that there is nothing systematic in
Monty’s behavior which could
help the player decide whether to
switch curtains or not. If this as-
sumption is dropped, the optimal
strategy may change substantially.
The following two scenarios, due
to Timothy Chow from Princeton
University, eloquently illustrate
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this possibility:

1. If the player picked the right
curtain, Monty Hall is so im-
pressed that he gives the
player a million dollars and
tells the player to go home,
otherwise he lets the player
reconsider. In this case
switching is a sure bet.

2. If the player picked the wrong
curtain, Monty is so angered
that he shoots the player and
the player dies, otherwise the
show drags on. In this case,
staying put is a sure bet.

These scenarios indicate that
watching the show many times
before deciding on an optimal
strategy may prove useful. As an
example, consider a situation sug-
gested by Cecil Adams’ second
column. Suppose an attentive
viewer of the show notes that
Monty (a) does not give the player
a chance to switch curtains on
every show, and (b) decides to
open a certain curtain twice as
often when the player initially
chooses the “right”’ curtain as does
not. A player who is aware of these
observations should remain indif-
ferent between switching curtains
and staying with the original
choice: In both cases the chances
of winning are exactly the same.

A Game with Many Rounds

Suppose that, motivated by all the
attention he has recently received
from ‘‘students of statistics
problems,” Monty Hall decides to
become innovative and change the
game as follows. There are 7 cur-
tains (numbered from 1 to 7) only
one of which contains the prize,
and the game consists of three
rounds. At the beginning of every
round, Monty discards one of the
curtains by opening one from the
curtains that do not contain the
prize and that differ from the
player’s current choice. Then, he
gives the contestant the oppor-

tunity to switch to one of the
remaining curtains. Under these
conditions, a hypothetical game
could develop as follows. The
player chooses curtain 7 (the game
begins); Monty discards curtain 3
and the player switches to curtain
5 (first round completed); Monty
discards curtain 1 and the player
moves to curtain 4 (second round
completed); Monty discards cur-
tain 7 and the player refuses
Monty’s offer to switch curtains
(third round completed); Monty
opens the curtain with the prize
(the game ends). Suppose further
that Monty wants to give the con-
testant a fair chance and decides
to behave in a simple way. On
every round, he chooses to open
one of the available curtains (i.e.,
those that do not contain the prize
and do not correspond to the
player’s current choice) at ran-
dom.

In this game the decisions the
player must make are considerably
more complicated than in the
original game, because the number
of strategies at the player’s dis-
posal is much larger. The player
must decide on every round
whether to switch curtains or not;
hence the player has access to at
least 23 = 8 possible strategies. In
reality, there are many more addi-
tional choices to make. For ex-
ample, once the player has
decided to switch, the player must
decide between moving to a cur-
tain that has not been chosen
before and moving to a curtain
chosen on one (or even two) of the
preceding rounds.

Which strategy should the con-
testant follow? Should the player
switch on every round or only on
the first round? Should the player
switch on the first and last rounds?
And when the player switches cur-
tains, should the player prefer a
curtain that has not been visited
before or a curtain that has already
been chosen on a previous round
(assuming, of course, that such a
curtain is available)? Again, it is
probably worthwhile for the







As a generallzatlon mtended to
recreate more faithfully the actual

* conditions on “Let's Make a Deal,”
suppose that the three curtains con-
ceal a fabulous first prize (say a new
car), a nice second prize (say a
refrigerator), and a worthless gag
third prlze (say a goat). Suppose that
Monty,.in.an effort to entice you, the
player, to switch away from your

- original door selection, will-always
‘open: the door revealing  the
- refrigerator if he can (i.e., if you have

otherwise, he will reveal the- goat (he
would never reveal the car’ s Ioca—
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“problem.

tlon) If thls is Montys strategy and

seeing the goat revealed, switching
doors will of course win the car with
probability-1 (Monty only does this if
you initially. picked the refrigerator):
But conditional onseeing the -
refrigerator revealed, switching
doors will win-the car with probabtllty

Note however that an argument
that unconditionally, the strategy of -

car 2/3 of the: tlme as |n the onglnal

reader to pause at this point and
try to guess what the player’s best
strategy might be,

In an informal way, the optimal
strategy can be derived from the
intuition we gave for the solution
to the original puzzle (a formal
derivation is given in the Engel
and Venetoulias paper in the Ad-
ditional Reading). When Monty
opens a curtain, he is prevented
from discarding the player’s cur-
rent curtain and, therefore, is not
giving out any information on the
likelihood of finding the prize be-
hind that curtain. By the same
token, Monty’s choice increases
the likelihood of finding the prize
behind one of the curtains he
could, but did not, choose. Thus,
on any given round, the curtains
that are most likely to contain the
prize are those that the player has
not visited so far. The probability
of finding the prize behind an

“unvisited” curtain grows after
each round, whereas the prob-
ability of finding the prize behind
one of the remaining curtains (i.e.,
the player’s current choice)
remains unchanged. The last time
the player has the option to switch
curtains, the curtains that are more
likely to contain the prize are those
curtains that the player has never
visited before. Furthermore, the
chances of finding the prize be-
hind one of those unvisited cur-

tains do not depend on the strategy
that the player followed during the
earlier part of the game. The only
effect the previous rounds have is
to prevent Monty from discarding
certain curtains and this is taken
into account by all the move-to-a-
new-curtain-on-the-last-round
strategies. Choosing an unvisited
curtain on the last round gives the
contestant the largest probability
of winning the prize regardless of
what the player did on all the pre-
vious rounds. In other words, any
strategy that switches to an un-
visited curtain on the last round of
the game is optimal.

Clearly, the optimal strategy
depends neither on the actual
number of curtains nor on the
number of rounds, as long as there
are enough curtains in the game.
The probability of winning the
prize in the general game with n
curtains and k rounds can be cal-
culated easily from the simplest
among all optimal strategies. This
strategy switches curtains only on
the last round. With this strategy,
the player always moves to a cur-
tain not visited before, because the
first, and only, time the player
switches curtains ‘is on the last
round. The game then becomes
equivalent to a game with one
round where Monty discards k
curtains and offers the player the
option to switch to one of the

remaining n—k-—1 curtains.
Counting cases, just as in Table 1,
shows that the player’s probability
of  winning is (n—-1)/
[n(n — k- 1)]. For example, when
there are 7 curtains and 3 rounds,
the probability of winning is 2/7,
which is twice as large as the prob-
ability of winning when the player
stays with the initial choice
throughout the game.

Conclusion

The surprising conclusion of the
three curtains problem has made
it a favorite mathematical puzzle.
In fact, some prestigious business
schools (e.g., Harvard, Stanford,
etc.)use the puzzle to educate their
MBA students in decision making.
The problem serves as an example
of how intuition can be misleading
in making decisions under uncer-
tainty (for more on this and other
relevant entertaining problems,
see Tversky and Gilovich’s article,
as well as the one by Larkey et al.,
in the Additional Reading).
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