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Abstract. Conditions under which sums, products and time-aggregation of ARMA
processes follow ARMA models are derived from a single theorem. This characterizes
these processes in terms of difference equations satisfied by their autocovariance function.
From this we obtain necessary and sufficient conditions for a function of a Gaussian
ARMA process and the product of two possibly dependent Gaussian ARMA processes
to be ARMA. We show that the sum and product of two ARMA processes related by a
Box and Jenkins transfer function model belong to the ARMA family.
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1. INTRODUCTION

The family of ARMA processes, popularized towards 1970 by Box and Jenkins
(1976), have become an important tool for modelling time series. In fact, the first
two moments of any second order stationary, purely non deterministic process
may be efficiently approximated by those of a member of the ARMA family, this
being equivalent in the frequency domain to approximating a function of
L,(—, 7) by a rational function in e™. This, in its own right, justifies the study
of conditions under which sums, products, time-aggregation and other functions
of these processes satisfy an ARMA model. '

A second reason for studying this topic is that, especially in certain applications
of time series to economics, the families of AR and MA processes are easier to
interpret than is the mixed form. Hence it is interesting to show how ARMA
processes may arise in practice as sums, products, time-aggregation and other
functions of AR and/or MA processes.

Granger and Morris (1976) showed that the sum of uncorrelated ARMA
processes is an ARMA process. Introducing an obvious notation we may write

N
Y. ARMA (p;, ¢)=ARMA (p, q),

i=1

where

N
p<Y p and g<p-+max(qg—p,i=1,..., N)

i=1
Dossou-Gbete, Ettinger and de Falguerolles (1980) showed that a necessary
and sufficient condition for the sum of two possibly dependent ARMA processes
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to belong to the same family is that the sum of the corresponding cross-spectral
densities be a rational function in e”.

Dossou-Gbete et al. (1980) also proved that the product of independent ARMA
processes is ARMA. They did not obtain bounds for the orders of the resulting
process.

Finally, for the time-aggregation of ARMA processes, Dossou-Gbete et al.
(1980) (based on the work of Amemiya and Wu (1972), Anderson (1976), and
Wei (1979)) showed that if X is ARMA (p, q) and Y is defined as

n—1

Y, = Z anlI+j, (1.1)
j=0

then Y will be ARMA (po, qo) with po<p and go<p+[(q—p +n—1)/1], where
[x] denotes the integer part of x.

In the present article we prove these previous results from a single theorem,
a characterization of ARMA processes in terms of difference equations satisfied
by their autocovariance functions. Though this theorem seems to have first been
proved as a lemma in an appendix of Beguin, Gourieroux and Monfort (1980),
Professor H. Rost pointed out to me that the ideas for a proof are implicit in
work of F. Riesz and L. Fejér dating back to 1916 (cf. Polya and Szego (1954,
pp. 81-82 and 274-275)). All these proofs are based on frequency domain
arguments. We give a simple time domain proof in section 3 which we feel gives
more insight into this important result. -

Based on this theorem we prove in section 5 that the product of independent

- ARMA processes is such that

N
[T ARMA (p., )= ARMA (p, 9),

where

psIl pp and g<p+max(q—p,i=1,...,N).

We also find a necessary and sufficient condition for the product of two possibly
dependent Gaussian ARMA processes to be ARMA. Granger and Newbold
(1976) proved that a quadratic transformation of a Gaussian AR (p) process is
ARMA. In section 6 we prove that a function of a Gaussian ARMA process will
be ARMA if and only if the original process was MA or the function is a
polynomial. Finally, we prove that the sum and product of two ARMA processes
related by a Box and Jenkins transfer function model belong to the ARMA family.

2. DEFINITIONS AND NOTATION

We work with real, zero mean, second order stationary, purely non deterministic
processes in discrete time. If X =(X,, t€Z) is such a process, r.(k) will denote
its autocovariance function and H,(X) the Hilbert space spanned by (X, s <)
with the usual inner product: (X, Y)= E(XY).
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We say that X is an autoregressive-moving average process of order (p, q)
(abbreviated ARMA (p, q)) if there exists a zero mean, second order stationary,
uncorrelated process ¢ = (g, t€Z) (called white noise) and polynomials

P .
a(z)=1- Y a7, a, #0,
j=1
with roots outside the unit circle and
i k
c(z)=1- ) az, cg #0,
k=1

with roots outside or on the unit circle, such that
X —a X~ apX,_p =g, —ClE_1— "~ CqEi—g
or equivalently, denoting by B the backshift operator,
a(B)X, = c(B)e,. 2.1

The operator inverse to B is denoted by F.
From the hypotheses made on the roots of a(z) and ¢(z) we have

H(X)= Hi(e). (2.2)

In fact, given any zero mean, second order stationary, purely non deterministic
process X =(X,, t€Z) (in particular a process X satisfying (2.1)) there exists a
white noise process € = (&, t € Z) and a square summable sequence (¢)j=0> Co=1,
such that

+00
X,= Y Gep (23)
=0

J

where X and e satisfy (2.2).
Multiplying both sides of (2.1) by X, taking expectations and using (2.2)
and (2.3) we obtain that

a(B)r.(k)=0, k>gq (2.4)
a(B)ri(q) = —c,o° #0, (2.5)

where o is the variance of &, which we assume positive.
Solving (2.4) we obtain that

p
r(k)=Y cai, k>q-p, (2.6)
i=1

where ¢;',;i=1,..., p,aretheroots of a(z) which, merely to simplify the algebraic
expressions involved, we have assumed are distinct.
A similar expression to (2.6) may be obtained for the autocorrelation function
of the process, defined by:
rx(k)

px(k) =0
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We say that X and Y are related by a Box and Jenkins transfer function model
if they are jointly second-order stationary ARMA processes and there exist
polynomials

8(z)=1-3 8jzj, 6,#0,
j=1
with roots outside the unit circle and
w(z)=wy— ), wkzk, w, # 0,
k=1

such that
6(B)Y, = w(B)X,+8(B)N, (2.7)

where N is an ARMA process uncorrelated with X.
Multiplying both members of (2.7) by X,_, and taking expected value, we obtain

8(B)r,, (k)= w(B)ry(k), (2.8)

where r,,(k) denotes the cross-covariance function of X and Y.
Replacing k by —k in (2.8) and using the fact that r.(k) is even, we have

S(F)ryx(k) = w(F)r(k). (2.9)

From (2.4), (2.8) and (2.9) it follows that
a(B)8(B)r,,(k)=0, k>gq+s (2.10)
a(B)o(F)r,(k)=0, k>gq (2.11)

As r,, (k) is bounded and the roots of 8(z) are outside the unit circle, (2.11)
leads to

a(B)r,.(k)=0, k>gq. (2.12)
Finally we mention that the cross-spectral density between X and Y is defined
for A e[~m, 7] as

+0oo

fo(A)= E rey (k) e ™, (2.13)

1
27
3. THE MAIN RESULT

THEOREM 1. A necessary and sufficient condition for a zero mean, second-order
stationary, purely non deterministic process X to be ARMA (p, q) is that there exists
a polynomial of degree p, a(z), with roots outside the unit circle, such that

a(B)r(k)=0, k>gq

3.1)
a(B)r.(q)#0. _
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4. sums OF ARMA PROCESSES

ProproSITION 1. Let X and Y be ARMA (p,, q,) and ARMA (p,, q2), respec-
tively. A necessary and sufficient condition that X + Y be an ARMA process is that
there exist a polynomial a(z) with roots outside the unit circle, such that

a(B)(ry, (k) +ry(k)) =0, k> q;. 4.1)

Then X +Y will be an ARMA (p, q) with P<Z,3~=l p; and q=<p+max (g~ p;
i=1,2,3) where p; is the degree of a(z).

Proor. Noting that
Py (K) = 15 (K) + 1y (K) + 1 (K) + 1, (K) (4.2)
we have, from (2.4) and (4.1), that

3
ax(B)ay(B)a(B)rx+y(k) = 0’ k > Z pj +max (‘L _pi, l = la 2) 3)
j=1
where a,(z) and a,(z) are the autoregressive polynomials of X and Y, respectively.
The proof concludes by applying theorem 1 to this expression.

REMARKS. 1. If Xand Y are uncorrelated then p; = ¢g; =0 and we recover the
result due to Granger and Morris (1976) stated in the introduction.

2. Based on (2.13) and some elementary difference equation theory it is easy
to prove that (4.1) implies that f,(A) +/,x(A) is a rational function in e™. Thus
Proposition 1 is a time domain version of the theorem due to Dossou-Gbete et
al. (1980).

CorOLLARY 1. If the processes considered in proposition 1 are related by a Box
and Jenkins transfer function model (see (2.7)) then due to (2.10) and (2.12) we
have that

a,(B)8(B)(ry, (k) +1,x(k)) =0, k> q, +max (r, s).

Hence, by applying proposition 1 (with ps=p,+r and g3;=q, +max (r, s)) we
conclude that X +Y is ARMA (p, q) with p<2p,+p,+rand g<p+max (q, — P,
G2— P2, (1= p) H(s—1).

5. proDUCTS OF ARMA PROCESSES

PROPOSITION 2. Let X and Y be independent ARMA processes of order (pi, q1)
and (ps, q,) respectively and let Z denote their product. Then Z will be ARMA

(p, q) with p<p,p, and q<p +max(q, —Ppi, 2~ P2)-

ProOOF. Since X and Y are independent it is easy to show that Z will be zero
mean, second-order stationary, with

r.(k) = r(k)ry (k). (.1
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By (2.6) we have that r(k)=Yi., c1ia k k> q,—p,and r,(k)=272, cyjyj, k>
q,— p.. Hence
Py P2
r(ky=%Y L Clic2j(alia2j)k’ k> max (q, — P1, 42~ P2)-
i=1 j=1
Defining

Py Py

a(z)= 11 1 (I -anasy2), (5.2)

i=1j=1
we have that

a(B)r,(k)=0, k> pp,+max (g =P, 42~ P2)
Applying theorem 1 concludes the proof.

ReMARKs. 1. From (5.2) the roots of a(z) will be of the form ayi a3, that is,
the product of the roots of the autoregressive polynomials of X and Y. Hence
it is not necessary that a(z) and c(z) have common roots to have p <p;p,. This
will be the case if o;ay; = X124 for some i# m, j# n.

2. Introducing the obvious notation (where strictly speaking the orders on the
right-hand side are only upper bounds) we have that for products of independent
processes:

AR (p)AR (p;) = ARMA {pp,, pip,—min (pi, p2)}
AR (p)AR (p) = ARMA (p°, p”—p).

On the other hand, as a consequence of (5.1):
ARMA (pi, 91) MA (¢2) = MA (42)-

Thus ARMA processes may arise as the product of two independent AR
processes. One situation where an economic time series may be interpreted this
way is when Z is the demand for a product satisfied by a certain company, X
the nationwide demand for the product and Y the company’s market share. That
X and Y are independent may be expected to occur frequently. Other examples
are mentioned by Wecker (1978).

3. Proposition 2 is easily generalized to the product of N independent ARMA
processes:

N
I1 ARMA (p, 4= ARMA (p, 4).

where p < [I~N., p: and g < p +max (q; — Ps i=1,..., N). Note the similarity to the
analogous result for sums of uncorrelated ARMA processes.

PrOPOSITION 3. Let X and Y be two possibly dependent Gaussian ARMA
processes of order (py, 41) and (p,, q,) respectively and let Z denote their product.




. —-166-—- —— ——— - —— E.M.R-A-ENGEL- — — -~ —- - - . _

A necessary and sufficient condition for Z to be ARMA (after subtracting its mean)
is that there exist a polynomial d(z) with roots outside the unit circle, such that

d(B)ry,(k)r,x(k)=0, k> qs.

Further, if the degree of d(z) is ps;, then X will be ARMA (p, q) with p=<p\p,+p;
and g<p+max (¢;—p,i=1,2,3).

ProoF. We have (Isserlis, 1918) that
r.(k) = r(k)r, (k) + 1o, (K)ry«(K). (5.3)
Adopting the notation used when proving proposition 2, we shall have, from (5.3),
d(B)a(B)r,(k)=0, k>q'

where g’ = p,p, +ps +max (g;— p,, i = 1,2, 3) and hence, by applying theorem 1, the
proof concludes. ‘

CoROLLARY 1. If the processes considered in proposition 3 are related by a Box
and Jenkins transfer function model (see (2.7)) then, due to (2.10) and (2.12),
Iy (k) - 1,.(k) will be of the form

pl+r ,pl
ro(r k)= ¥ c,,-czj(a,-aj)", k> gq,—p, +max (0, s—r).
i=1 j=1
By applying proposition 3 we conclude that Z is ARMA(p, q) with p=<
pip2+3(pr +1)(py+2r) and q<p +max (g, —pi, ¢2— P2, (41 —P1) +(s—r)).

REMARK. Based on the expression for the autocovariance of the product of
two stationary processes due to Wecker (1978), it is easy to state a necessary and
sufficient condition for the product of two not necessarily Gaussian ARMA
processes to be ARMA.

6. FUNCTIONS OF AN ARMA PROCESS

TueorREM 2. Let T(x) have a Hermite polynomial expansion and X be a Gaussian
ARMA process. Then a necessary and sufficient condition for T(X) to be ARMA
is that X be MA or T be a polynomial.

ProoF. From theorem 1 it follows easily that a function of a Gaussian MA (q)
process will be MA (g'), ¢'< g. Hence we restrict the proof to the case in which

X is ARMA (p, q) with p=1.
To prove sufficiency, we note that due to Isserlis (1918) for a zero mean Gaussian

process X
E(Xl| th T Xr,,) ZZ E(Xt,-l Xtiz) v E()(r,-"_I Xt,-")a (61)

where n is even and the sum is taken over all possible ways of dividing n points
into in pairs. If n is odd the corresponding expression is zero. Hence the
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autocovariance function of a polynomial of degree n in X, Y, will be a polynomial
of degree n in r,:

B0 = ¥ elrdoy, (62)

where we have omitted the constant term because r,(k) must tend to zero as K
tends to infinity. By substituting (2.6) into (6.2) and applying theorem 1 the desired
conclusion follows.

To prove necessity we consider

Y, = T(X),

where T is a function with Hermite polynomials expansion

T(z)= Eo a;Hi(z).

j=0
Based on Granger and Newbold (1976) we have that

+00

r(k)y=X% aijir(k), (6.3)

j=

where, without loss of generality, we assume r.(0)=1.

If T is not a polynomial, an infinity of «;’s will be non-zero. To prove that Y
is not ARMA, due to theorem 1 it suffices to show that in this case r, cannot be
expressed as

r,(k)= z By, k=t (6.4)

As r.(k) admits an expression like (2.6), by subtracting (6.3) from (6.4) our
problem is equivalent to showing that the following situation may not arise:

+co
(Vk=5)Y kyy=0
j=0

with v, # v, if i#j; 0<|y|<1; and infinitely many ks different from zero. We
may further assume that only a finite number of ; have modulus equal to

k =max {|71|/l€ IN}’

and that they are yo, y1,---, ¥ With k;#0,i=0,...,r.
Finally, we may take
+00
3 lig|< o
j=0
Should this not be the case, due to (6.3), Y would have infinite variance and
hence not be ARMA.
That the preceeding situation may not arise, we prove in the Appendix. The
basic idea of the proof is due to J. Marhoul.




e

. _E.M. R A ENGEL
COROLLARY 1. In the particular case of the square of a Gaussian ARMA (p, q)
process we have that (6.1) leads to

r, (k) =2r3(k).
Adopting the notation of (2.6) and defining

a()= 11 11 (1 - ae2),

i=1 j=i
it follows that
a(B)r,(k)=0,  k>3p(p+1)+q—p,

and hence, after subtracting its mean, X will be ARMA ( po, qo) With py<3p(p +1)
and go<po+q—p.

Therefore, if X is Gaussian AR ( p) then, after subtracting its mean, X 2 will
generally be ARMA (5p(p +1),3p(p—1)). Of course ARMA processes may also
arise as the square of a simpler AR process. For example, if the potential difference
through a capacitor follows an AR (p) process, the accumulated charge will be
ARMA (p(p +1),3p(p—1)). Similarly, the power dissipated by a resistance will
be ARMA if the corresponding current intensity is AR.

7. TIME-AGGREGATION OF ARMA PROCESS

ProproOSITION 4. Let X be ARMA (p, q) and define Y as in (1.1). Y, is a linear
combination of n variables of the original process, ranging from tl to ti + n —1. Then
Y will be ARMA (po, q0) With po<p and q,<[(qg—p +n—-1)/1].

ProoF. It is easy to show that Y will be zero mean, second order stationary,
with

n—1 n—1

ry(k): Z z a,'ajrx(kl +_]_l) (7.1)
i=0 j=0
The proof then follows by substituting (2.6) into (7.1) and applying theorem 1.
The corresponding autoregressive polynomial will be

a(z) = '[:[l (1-aiz). (7.2)

REMARKS. 1. Both the processes obtained by sampling X at equal intervals
in time and by aggregating it in time are particular cases of proposition 4.

2. Under the hypothesis of proposition 4, if n is fixed and [ sufficiently large,
the process will be ARMA (p’, q¢') with p'<p and ¢'sp if g—p+n—1<0 and
q'<p+1 otherwise. Due to (7.1), the limiting process as [ tends to infinity will
be white noise.

3. A particular case of interest in proposition 4 is when Y, corresponds to
non-overlapping averages of length n of the original process. In this case n =1




STUDY OF FUNCTIONS OF ARMA PROCESSES 169

and a;=1/n,j=1,..., n. Cox (1981) notes that Y converges to white noise as n
tends to infinity. We may now see how thie white noise process is approached.
If we write

1 1
Y(l") = Z Xn1+j
Nj—o
we shall have that for sufficiently large n, Y willbe ARMA (p,p+1)if p=q —1
and ARMA (p, p +2) otherwise. Because of (7.2) the corresponding autoregressive
polynomial will be

a(@)=11 (1 -ai2)

thus showing that the roots of a,(z) will tend to zero geometrically as n increases.
A similar situation arises as [ tends to infinity for the process considered in the
previous remark.

Let us finally mention that ARMA processes may also arise in practice as the
result of aggregating or sampling simpler autoregressive processes.

CoROLLARY 1. If any two of the processes Y, X and N considered in a Box and
Jenkins transfer function model are ARMA then the third will also be ARMA.
Further, if (p,,q,), (Px 4x) and (pn, gn) are the corresponding orders, then
pyspx +pN +r, qyspN +qx +Sa qygpx +qN +rs pxspN +py +S, qxspy +qN +r,
G <pn+qy+1, PNSPctDy 1 AN Spst g, trand qy<p, T4 TS

ProoF. If X and N are ARMA, the results concerning Y follow from applying
proposition 4 to w(B)X, and 8(B)N, and then applying proposition 1 to their sum.

If Y and N are ARMA then, noting that the autocovariance function of Y~ N
is equal to r,(k)— rnv(k) and applying theorem 1, Y~ N will also be ARMA. This
part of the proof concludes by noting that

w(B)X, = 8(B)(Y,~ N,

and applying proposition 4.
Finally, if X and Y are ARMA then, by proposition 4, (B)X, and §(B)Y,
will also be ARMA. Considering that

8(B)N,=8(B)Y, —~ w(B)X,

and noting that the autocovariance function of the left member equals the
difference of the autocovariance functions of the right members, we complete
the proof by applying theorem 1.
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'APPENDIX
The following situation may not arise:
+00
(Vk=s)Y kyf=0 (A.D)
- Jj=0
i#j=>v#y (A.2)
k;#0, i=0,...,r (A.3)
0<|yl=k<1, i=0,...,r (A.49)
lvl<k, — j>r (A.5)
+o0
¥ |kl <+oo (A.6)
j=0

where the k;’s and 7;’s are complex numbers.

PrOOF. From (A.l):

r \ K +00 AN
(Vk=s5)- T k (i) =T Kk (i) (A7)
J

=0 Yo j=r+il Yo

By applying Lebesgue’s Convergence Theorem to f, =f", with f(j)=|'yj|/|'yo| if jeT=
{r+1,r+2,...} and 0 elsewhere and taking the measure u. which associates to j mass [k;, je T, we
conclude that
K

Xl o, (A8)

Yo

+00

kl—lTooj=z,,:+l ijl

(Note: Due to (A.4) and (A.5), f,, will be dominated by the natural number’s indicator function
which will be integrable due to (A.6).)

But the left side of (A.7) corresponds to the solution of a homogeneous linear difference equation

of order r +1 with constant coefficients and all its characteristic values on the unit circle. It is well
known that such an expression has no limit when k grows, contradicting (A.8).
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! Present address: Stanford University, Department of Statistics, Stanford, California 94305, USA.
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